An Implementation of Auctions in 3APL

Norman Salazar Ramirez
Benjamin Adtarth
Sergio Alvarez Napagao
Universitat de Barcelona
course report foMulti-Agent Systems
at Universitat Politecnica de Catalunya

January 26, 2007

Abstract

We implemented two auction frameworks in 3-APL in order tst tiés
capabilities. We provide some criticism, including comieg the IDE, the
parser, the lack of more sophisticated data structures. dNelede that ex-
perience has been quite good, and we think that, as it is theatiede, 3-APL
could be a great language for BDI agents if this kind of proidevere solved.

Contents




1 INTRODUCTION 2

1 Introduction

3-APL stands foAbstract Agent Programming LanguageAtrtificial Autonomous
Agents Programming Languaged was created in the University of Utrecht as an
academic tool for developing intelligent agents. The ligehce of the agents is
provided by a complex mental state, which consists fietent mental attitudes,
and by a deliberation process that provides a transitionharésm between the
mental states. Also the agents are capable of interactitigesich other, directly
by communication, or indirectly through the shared envinent. The platform
part of 3-APL provides the mechanism to deploy multiple ageit the same time
as well as managing their communication.

The purpose of this project was to find out about the worth &C8- as a
multi-agent language and developing tool. Our reason fkingsthis question,
come from the fact, that most of the literature we found al3APL, only covers
its theorical properties, its plans for the future, and gsign; and no mention or
reference to examples or implementations is given, exefmgbme toy code that
is already provided with the tool. (e.g. (Dastani, Riemgd§ Meyer, 2005),
(Dastani, Boer, Dignum, & Meyer, 2003), (dinverno, Hindxik& Luck, 2000))

At first glance we found the language attractive, with respedts reasoning
operators and capabilities; however a second glance gabe irmpression that as
a language and tool, 3-APL was lacking in important aspestted to communi-
cation, procedural methods, integration with its undértijava and it friendliness.
So we deem necessary taking a third glance to what 3-APL septg as a multi-
agent developing tool.

This study will consist in implementing a simple, yet intgieg (non-trivial)
multi-agent system, so that a good grasp of its capabilities short-comings can
be accomplished. We choose as a system to model a marketapietien; since it
is a well known problem in the literature that has been taeayemulti-disciplinary
approaches, and has many of the properties and requireméith are useful
in multi-agent systems (e.g. reasoning, communicatiogptiegioncooperation,
among others).

In the following sections a small overview of what an auctisnand of its
different types; followed by a recapitulation of what 3-ALP ise Will describe
exactly what kind of auctions we tried to model and the mettmgly we applied
to create this model from an agent point of view; finally wel walk about how the
actual implementation proceeded, present some discusg@s and conclusions.

2 Methodology

The system that we have designed and implemented is a snctitbramarket in
where agents canfler and bid for products. We have developed two basic pro-
totypes, which are described in this section. In auctioastigpants bid openly
against one another, with each bid being higher than théque\bid. The auc-



2 METHODOLOGY 3

tion ends when no participant is willing to bid further. Aiacts have been studied
in a multi-agent framework, e.g. (Sandholm, 1995), (P. Rrivdan, Wellman, &
Walsh, 1998), and (P. Wurman, Walsh, & Wellman, 1998)

2.1 Simple buyer — seller

In our first protoype, we have designed a simple system inlwtiiere are two
types of actors:

e Sellers: proactive agent that has a list of objects to sdiiclware dfered
once at a time to a list of possible buyers.

e Buyers: reactive agents, each buyer has a happiness tliteaHist of the
utilities each object has for itself, and a matrix of utdii each object it
believes the other agents to have.

The initial procedure of as follows:

e The seller checks if it has objects to be sold. If there are iasglects one.
It stops otherwise.

e The seller sends a broadcast message to everybody in itslmtyeffering
the object.

e Each buyer, as it receives thé&@r, checks the utility of the object being
offered and the money it has available.

o If there is siificient money and if the utility high enough, it makes a bid.

e The seller receives bids and notifies bidding agents if theyat the highest
anymore.

e Some buyers may refrain from further bidding and pass.
e After some time, the seller accepts the highest bid.

e The object is moved from seller to buyer in exchange for thetpat comes
from contrary direction. Both buyer and seller increasér theppiness cor-
responding in extend to utility and money gained, respelstiv

e If Buyers’ happiness exceeds a threshold they quit the @udthey are al-
ready happy enough).

e The seller goes on selling the next object.



3 DESIGN 4

2.2 Host — Seller — Buyer

We tried to make the problem a little more interesting and glemy by adding a
new type of participant to the system, the auction host. dhee(not to be confused
with the concept of role in MAS) of the host, is that if regirgtand directing the
participants in the auction, or in more simple terms, it aadsvel of bureaucracy
to the system. For our testing purposes this bureaucrasyseplay with a more
complex communication scheme, which is often criticize@-iAPL and represents
one of our testing objectives.

In this schema the seller and buyer players retain the saaraatkristics and
objectives as before, however new requirements and ristigcare placed upon
them; these restrictions will be placed by the new playerhibst. Now whenever
a new buyer player entgexits the system, it is required of him to present himself
to the host; otherwise it will not be able to participate iy anction.

A similar scenario is required of the sellers. Whenever iselants to @fer a
good for sale, it will need to notify it to the host, who willeéh put it on a queue
list of auctions to do. The host then selects a seller frorisit®f sellers, (this can
be done by some simple heuristic, or to optimize certaintfang and announces
to all the buyers in the system, that an auction for item X wf#irt and that if
interested the seller S should be contacted. After thisptheess of the auction
remains the same as explained before, and its only wheretingstsold (or certain
time passes, if no biddings where done) that the controtmetto the agent. This
can be complicate even more by allowing the host to startiphellagents at the
same time and by allowing buyers to bid in the multiple autio

In difference with the other two type of players is that the host doesry to
maximize a function (happiness), but connects the ageutsa@mtrols most of the
process.

3 Design

We used Prometheus as the multiagent design tool. The Freasetool is very
easy to use and powerful which rendered this process veryottahnle for us. As
it was our first experience with it, some features of it mayehaot been used at its
best, but it was very useful for our later implementationpmses.

The full design for our system is provided as HTML togethethwthis work
and additionally available ftttp: //www.1si.upc.es/~salvarez/auctions/.

4 Implementation

3-APL is not only the language but the platform that allowsgramming, de-
ployment and execution of the agents. The 3-APL platformids & charge of
the transportation of the communication messages; andoadsides information
about the existing agents to other agents through the aganagement system


http://www.lsi.upc.es/~salvarez/auctions/

4 IMPLEMENTATION 5

(AMS). Moreover, once the agents are running it providesitdng tools, such
as a snter, for the message exchange and specific windows to moh&anéental
states of the agents. It also provides means for step by sae'ncrring@

On the specification side, 3-APL requires Java 1.5 to run,tasdt is easy to
install by downloading and executing an 850kb.jar file. Dgrdeployment time it
can be set as it can be set as a server to host multiple ageagsaalient.

We found some strong points in 3-APL that make it look a straregsatile and
promising language if it is to be continued and improved asogept. The most
remarkable points are a robust and extremely simple conwation platform, a
very intuitive and powerful language, and a whole new wooldé¢ explored with
the Java and Prolog bindings. This last point is very impurfar us. Prolog
supports the creation of shared, extensible and compléflbelses. Java is a key
advantage, as it allows 3-APL to interact with any other Jaféware, opening a
window to resources and devices.

There are some major issues in 3-APL, though, that presentgtisadvan-
tages at the implementation stage. The main concerns atedédb the program-
ming tool bundled with the release and which is the only wathatmoment to
build and compile 3-APL projects. For instance, the toolsnet have copy and
paste capabilities, and some characters were not mapped teygboards, even
the Tab key did not work. So we had to work with external editar all times,
making the implementation process much slower.

Furthermore, the integrated compiler, often at a time, ditl show proper
parser messages, so we wasted many hours trying to find tloé geeenthesis
or colon we were missing in the code. As a last example, tlsen® isupport for
more sophisticated data structures, even lists are unctabfe to use and render
the code into spaghetti of routines that are only concemeeddding them. 3-APL
lacked also nested lists, which forced us to implement oun ovutines to use
them. Communication is simple and powerful by passing ab#lithe receiver's
belief base, but it cannot be bound to an ontology and doesswoperformatives.
This could make it weak inside multiagent systems which irega strong use of
semantics.

However, the overall experience has been quite good, andoweskly think
that, as it is noted before, 3-APL could be a great languag8fd agents if this
kind of problems were solved. We could solve some of themn déise previously
said example of the nested lists: the capabilities and gystem can be a bypass
to code procedural methods, which is a good point.

1A more detailed description can be found at
http://www.cs.uu.nl/3apl/download/java/userguide.pdf and
http://www.cs.uu.nl/docs/vakken/map/slides/3apl-Syntax.pdf


http://www.cs.uu.nl/3apl/download/java/userguide.pdf
http://www.cs.uu.nl/docs/vakken/map/slides/3apl-Syntax.pdf

5 CONCLUSIONS 6

5 Conclusions

We think it became apparent that 3-APL is a powerful tool fog treation of
intelligent agents, especially its practical reasoningsprovide ways of creating
very complex mechanisms. However the use of static deliiberaycleE limits
its functionality and forces the user to explode the numlbeules to balance this
out, which complicates the task of agent implementation.

The lack of a strong communication protocol also is a furg@nt which lacks
in the language, complicating the task of creating coot@naand cooperation
between agents.

We also find lacking the absence of agent actions dedicatednbputer pro-
cessing; right now if an agent requires an action not relaitfuchanging its men-
tal state it has to be done through the environment. For ebainpould be nice to
have agents in which part of its executing plan will consfstumning some clas-
sification algorithm or some numerical method which is onljned by the agent
and so it could be encapsulated in its program.

3-APL is a comparatively new model (first publications daaekbto 1998). It
has been noted that there are no industrial-strength apiplis yet, which could
boost its development.

References

Dastani, M., Boer, F. de, Dignum, F., & Meyer, J. (2003). Pangming agent de-
liberation: An approach illustrated using the 3apl langud@roceedings of
the Second International Conference on Autonomous AgedtMaltiagent
Systems (AAMAS’'03Welbourne

Dastani, M., Riemsdijk, M., & Meyer, J.-J. (2005). Programghnmulti-agents
systems in 3aplMulti-Agent Programming (Languages, Platforms and Ap-
plications) 39-67.

dinverno, M., Hindriks, K. V., & Luck, M. (2000). A formal ahitecture for the
3apl agent programming languaderoc. of ZB0) 168-187.

Sandholm, T. W. (1995). Limitations of the Vickrey auctiaon domputational
multiagent systemsProceedings of the First International Conference on
Multi-Agent System#IT Press

Wurman, P., Walsh, W., & Wellman, M. (1998)Flexible double auctions for
electronic commerce: Theory and implementation.

Wurman, P. R., Wellman, M. P., & Walsh, W. E. (1998, 9-13,).e Michigan
Internet AuctionBot: A configurable auction server for humaad software
agents. In K. P. Sycara & M. Wooldridge (EdsProceedings of the 2nd
international conference on autonomous agents (agentgi@& 301-308).
New York: ACM Press.

2Seéehttp://www.cs.uu.nl/3apl/deliberationcycle.pdfl


http://www.cs.uu.nl/3apl/deliberationcycle.pdf

	Introduction
	Methodology
	Simple buyer -- seller
	Host -- Seller -- Buyer

	Design
	Implementation
	Conclusions
	References

