
An Implementation of Auctions in 3APL

Norman Salazar Ramirez
Benjamin Auffarth

Sergio Alvarez Napagao
Universitat de Barcelona

course report forMulti-Agent Systems
at Universitat Politècnica de Catalunya

January 26, 2007

Abstract

We implemented two auction frameworks in 3-APL in order to test its
capabilities. We provide some criticism, including concerning the IDE, the
parser, the lack of more sophisticated data structures. We conclude that ex-
perience has been quite good, and we think that, as it is notedbefore, 3-APL
could be a great language for BDI agents if this kind of problems were solved.

Contents
1 Introduction 2

2 Methodology 2
2.1 Simple buyer – seller 3
2.2 Host – Seller – Buyer 4

3 Design 4

4 Implementation 4

5 Conclusions 6

References 6

1

1 INTRODUCTION 2

1 Introduction

3-APL stands forAbstract Agent Programming Languageor Artificial Autonomous
Agents Programming Languageand was created in the University of Utrecht as an
academic tool for developing intelligent agents. The intelligence of the agents is
provided by a complex mental state, which consists of different mental attitudes,
and by a deliberation process that provides a transition mechanism between the
mental states. Also the agents are capable of interacting with each other, directly
by communication, or indirectly through the shared environment. The platform
part of 3-APL provides the mechanism to deploy multiple agents at the same time
as well as managing their communication.

The purpose of this project was to find out about the worth of 3-AOL as a
multi-agent language and developing tool. Our reason for asking this question,
come from the fact, that most of the literature we found about3-APL, only covers
its theorical properties, its plans for the future, and its design; and no mention or
reference to examples or implementations is given, exempt of some toy code that
is already provided with the tool. (e.g. (Dastani, Riemsdijk, & Meyer, 2005),
(Dastani, Boer, Dignum, & Meyer, 2003), (dInverno, Hindriks, & Luck, 2000))

At first glance we found the language attractive, with respect to its reasoning
operators and capabilities; however a second glance gave usthe impression that as
a language and tool, 3-APL was lacking in important aspects related to communi-
cation, procedural methods, integration with its underlining java and it friendliness.
So we deem necessary taking a third glance to what 3-APL represents as a multi-
agent developing tool.

This study will consist in implementing a simple, yet interesting (non-trivial)
multi-agent system, so that a good grasp of its capabilitiesand short-comings can
be accomplished. We choose as a system to model a market place/auction; since it
is a well known problem in the literature that has been treated by multi-disciplinary
approaches, and has many of the properties and requirementswhich are useful
in multi-agent systems (e.g. reasoning, communication, negotiation/cooperation,
among others).

In the following sections a small overview of what an auctionis, and of its
different types; followed by a recapitulation of what 3-ALP is. We will describe
exactly what kind of auctions we tried to model and the methodology we applied
to create this model from an agent point of view; finally we will talk about how the
actual implementation proceeded, present some discussiontopics and conclusions.

2 Methodology

The system that we have designed and implemented is a small auction market in
where agents can offer and bid for products. We have developed two basic pro-
totypes, which are described in this section. In auctions, participants bid openly
against one another, with each bid being higher than the previous bid. The auc-

2 METHODOLOGY 3

tion ends when no participant is willing to bid further. Auctions have been studied
in a multi-agent framework, e.g. (Sandholm, 1995), (P. R. Wurman, Wellman, &
Walsh, 1998), and (P. Wurman, Walsh, & Wellman, 1998)

2.1 Simple buyer – seller

In our first protoype, we have designed a simple system in which there are two
types of actors:

• Sellers: proactive agent that has a list of objects to sell, which are offered
once at a time to a list of possible buyers.

• Buyers: reactive agents, each buyer has a happiness threshold, a list of the
utilities each object has for itself, and a matrix of utilities each object it
believes the other agents to have.

The initial procedure of as follows:

• The seller checks if it has objects to be sold. If there are any, it selects one.
It stops otherwise.

• The seller sends a broadcast message to everybody in its buyer list, offering
the object.

• Each buyer, as it receives the offer, checks the utility of the object being
offered and the money it has available.

• If there is sufficient money and if the utility high enough, it makes a bid.

• The seller receives bids and notifies bidding agents if they are not the highest
anymore.

• Some buyers may refrain from further bidding and pass.

• After some time, the seller accepts the highest bid.

• The object is moved from seller to buyer in exchange for the pay that comes
from contrary direction. Both buyer and seller increase their happiness cor-
responding in extend to utility and money gained, respectively.

• If Buyers’ happiness exceeds a threshold they quit the auction (they are al-
ready happy enough).

• The seller goes on selling the next object.

3 DESIGN 4

2.2 Host – Seller – Buyer

We tried to make the problem a little more interesting and complex, by adding a
new type of participant to the system, the auction host. The role (not to be confused
with the concept of role in MAS) of the host, is that if regulating and directing the
participants in the auction, or in more simple terms, it addsa level of bureaucracy
to the system. For our testing purposes this bureaucracy lets us play with a more
complex communication scheme, which is often criticized in3-APL and represents
one of our testing objectives.

In this schema the seller and buyer players retain the same characteristics and
objectives as before, however new requirements and restrictions are placed upon
them; these restrictions will be placed by the new player, the host. Now whenever
a new buyer player enters/exits the system, it is required of him to present himself
to the host; otherwise it will not be able to participate in any auction.

A similar scenario is required of the sellers. Whenever a seller wants to offer a
good for sale, it will need to notify it to the host, who will then put it on a queue
list of auctions to do. The host then selects a seller from itslist of sellers, (this can
be done by some simple heuristic, or to optimize certain function) and announces
to all the buyers in the system, that an auction for item X willstart and that if
interested the seller S should be contacted. After this, theprocess of the auction
remains the same as explained before, and its only when the item is sold (or certain
time passes, if no biddings where done) that the control returns to the agent. This
can be complicate even more by allowing the host to start multiple agents at the
same time and by allowing buyers to bid in the multiple auctions.

In difference with the other two type of players is that the host doesnot try to
maximize a function (happiness), but connects the agents and controls most of the
process.

3 Design

We used Prometheus as the multiagent design tool. The Prometheus tool is very
easy to use and powerful which rendered this process very comfortable for us. As
it was our first experience with it, some features of it may have not been used at its
best, but it was very useful for our later implementation purposes.

The full design for our system is provided as HTML together with this work
and additionally available athttp://www.lsi.upc.es/∼salvarez/auctions/.

4 Implementation

3-APL is not only the language but the platform that allows programming, de-
ployment and execution of the agents. The 3-APL platform is also in charge of
the transportation of the communication messages; and alsoprovides information
about the existing agents to other agents through the agent management system

http://www.lsi.upc.es/~salvarez/auctions/

4 IMPLEMENTATION 5

(AMS). Moreover, once the agents are running it provides monitoring tools, such
as a sniffer, for the message exchange and specific windows to monitor the mental
states of the agents. It also provides means for step by step monitoring.1

On the specification side, 3-APL requires Java 1.5 to run, andit is it is easy to
install by downloading and executing an 850kb.jar file. During deployment time it
can be set as it can be set as a server to host multiple agents oras a client.

We found some strong points in 3-APL that make it look a strong, versatile and
promising language if it is to be continued and improved as a project. The most
remarkable points are a robust and extremely simple communication platform, a
very intuitive and powerful language, and a whole new world to be explored with
the Java and Prolog bindings. This last point is very important for us. Prolog
supports the creation of shared, extensible and complex belief bases. Java is a key
advantage, as it allows 3-APL to interact with any other Javasoftware, opening a
window to resources and devices.

There are some major issues in 3-APL, though, that present grave disadvan-
tages at the implementation stage. The main concerns are related to the program-
ming tool bundled with the release and which is the only way atthe moment to
build and compile 3-APL projects. For instance, the tool does not have copy and
paste capabilities, and some characters were not mapped to our keyboards, even
the Tab key did not work. So we had to work with external editors at all times,
making the implementation process much slower.

Furthermore, the integrated compiler, often at a time, did not show proper
parser messages, so we wasted many hours trying to find the exact parenthesis
or colon we were missing in the code. As a last example, there is no support for
more sophisticated data structures, even lists are uncomfortable to use and render
the code into spaghetti of routines that are only concerned in reading them. 3-APL
lacked also nested lists, which forced us to implement our own routines to use
them. Communication is simple and powerful by passing a belief to the receiver’s
belief base, but it cannot be bound to an ontology and does notuse performatives.
This could make it weak inside multiagent systems which require a strong use of
semantics.

However, the overall experience has been quite good, and we honestly think
that, as it is noted before, 3-APL could be a great language for BDI agents if this
kind of problems were solved. We could solve some of them, as in the previously
said example of the nested lists: the capabilities and rulessystem can be a bypass
to code procedural methods, which is a good point.

1A more detailed description can be found at
http://www.cs.uu.nl/3apl/download/java/userguide.pdf and
http://www.cs.uu.nl/docs/vakken/map/slides/3apl-Syntax.pdf

http://www.cs.uu.nl/3apl/download/java/userguide.pdf
http://www.cs.uu.nl/docs/vakken/map/slides/3apl-Syntax.pdf

5 CONCLUSIONS 6

5 Conclusions

We think it became apparent that 3-APL is a powerful tool for the creation of
intelligent agents, especially its practical reasoning rules provide ways of creating
very complex mechanisms. However the use of static deliberation cycles2 limits
its functionality and forces the user to explode the number of rules to balance this
out, which complicates the task of agent implementation.

The lack of a strong communication protocol also is a furtherpoint which lacks
in the language, complicating the task of creating coordination and cooperation
between agents.

We also find lacking the absence of agent actions dedicated tocomputer pro-
cessing; right now if an agent requires an action not relatedwith changing its men-
tal state it has to be done through the environment. For example it would be nice to
have agents in which part of its executing plan will consist of running some clas-
sification algorithm or some numerical method which is only owned by the agent
and so it could be encapsulated in its program.

3-APL is a comparatively new model (first publications date back to 1998). It
has been noted that there are no industrial-strength applications yet, which could
boost its development.

References

Dastani, M., Boer, F. de, Dignum, F., & Meyer, J. (2003). Programming agent de-
liberation: An approach illustrated using the 3apl language. Proceedings of
the Second International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’03), Melbourne.

Dastani, M., Riemsdijk, M., & Meyer, J.-J. (2005). Programming multi-agents
systems in 3apl.Multi-Agent Programming (Languages, Platforms and Ap-
plications), 39–67.

dInverno, M., Hindriks, K. V., & Luck, M. (2000). A formal architecture for the
3apl agent programming language.Proc. of ZB00, 168-187.

Sandholm, T. W. (1995). Limitations of the Vickrey auction in computational
multiagent systems.Proceedings of the First International Conference on
Multi–Agent Systems, MIT Press.

Wurman, P., Walsh, W., & Wellman, M. (1998).Flexible double auctions for
electronic commerce: Theory and implementation.

Wurman, P. R., Wellman, M. P., & Walsh, W. E. (1998, 9–13,). The Michigan
Internet AuctionBot: A configurable auction server for human and software
agents. In K. P. Sycara & M. Wooldridge (Eds.),Proceedings of the 2nd
international conference on autonomous agents (agents’98) (pp. 301–308).
New York: ACM Press.

2Seehttp://www.cs.uu.nl/3apl/deliberationcycle.pdf .

http://www.cs.uu.nl/3apl/deliberationcycle.pdf

	Introduction
	Methodology
	Simple buyer -- seller
	Host -- Seller -- Buyer

	Design
	Implementation
	Conclusions
	References

