
 1

Agent Language Analysis: 3-APL

Sergio Alvarez Napagao, Benjamin Auffarth, Norman Salazar Ramirez

3-APL (Triple APL) is an agent programming language and platform, created as a

way of developing intelligent agents. The intelligence in the agents is provided by a

complex mental state, which consists of different mental attitudes, and by a deliberation

process that provides a transition mechanism between the mental states. Also the agents

are capable of interacting with each other, directly by communication, or indirectly

through the shared environment. The platform part of 3-APL provides the mechanism to

deploy multiple agents at the same time as well as managing their communication.

3-APL stands for Abstract Agent Programming Language or Artificial Autonomous

Agents Programming Language and was created in the Utrecht University as an academic

tool.

The Agent

The first component of an agent in 3-APL are its mental attitudes which are data

structures representing beliefs, goals, plans, actions and practical reasoning rules. Thus

we can say that an agent has a purpose (goals) which prompts it to act or interact in the

environment; in order to achieve its purpose it has plans outlining the necessary actions

required; it has rules that allow it to modify its plans in case its necessary; and it has

beliefs about itself and its environment which are necessary in deciding the plan of action

and to evaluate if its purpose has been accomplished. The relationship between the

mental attitudes and the BDI logic can be seen in Table 1.

BDI Theory 3-APL

Beliefs Beliefs

Desires Goals(declarative)

Intentions Plans (procedural)

The second component is a deliberation process which uses the beliefs and the goals to

decide which plan of action to follow, as well as deciding when the current plan needs to

revised or dropped. Figure 1 shows the basic structure of a 3-APL agent.

Figure 1. BDI relationship

 2

Beliefs

An agent needs to have beliefs about itself and about its environment. A belief is

represented by a prolog like formula, i.e. a subset of first-order predicate language. The

set of all beliefs an agent has at a given point in time is called the Belief Base. The belief

base is based on a closed world model, which means that if a belief is not on the base

then it is false.

In the 3-APL language the initial belief base if preceded by the keyword BeliefBase:, an

example of this can be seen in figure 2.

BELIEFBASE:

pos(room4),box(room2),delpos(room1),gain(5),cost(0),

forbid(room4, room2),door(room1, room2),door(room1, room3),

door(room2, room4),door(room3, room4),

door(R1,R2):-(R2,R1),forbid(R1, R2):-forbid(R2,R1)

The beliefs pos(room4) and box(room2) indicate to the agent that currently he believes he

is on room 4 and that there is a box in room 2. After moving to room 2 and picking up the

box, which could be part of a plan, these beliefs are removed and new beliefs are added,

such as pos(room2) and box(self). Note that the belief base can also contain rules like

door(R1,R2):-(R2,R1) which can be helpful in reducing the number of beliefs explicitly

stated.

Basic Actions

A basic action in an agent represents the capabilities it has to modify its mental

state or its environment. Basic actions are the only 3-APL construct capable of modifying

Fifure 1. 3-APL agent architecture

Figure 2. Belief Base

 3

the belief base. There three types of basic actions: mental actions, communication actions

and external actions.

The main purpose of a mental action is to update the belief base. These actions are

specified in the terms of pre-conditions and post-conditions, which are defined as belief

base queries. If an agent calls for the execution of a mental action, the agent will first

check if the pre-condition holds, and in case it does it will update the belief base in such

way that the post condition holds. If we take the mental action {pos(R1),cost(X),not

forbid(R1, R2)} Go(R1, R2) {not pos(R1),pos(R2),cost(X+1)} from figure 3 based on the

belief base seen on figure 2, we call for the action Go(room4,room3) then the pre-

condition will check the belief base to see if the current position is room4 and if it is

forbidden to move between rooms 4 and 3; since this conditions hold then the belief base

will be updated with the post conditions making the new position room 3. It should be

noted that the pre-condition Cost(X) has the purpose of instancing the variable X to the

current cost in the belief base, and this value is still available in the post condition.

In the 3-APL language the set of mental actions is preceded by the keyword

Capabilities:.

CAPABILITIES:

{pos(R1),cost(X),not forbid(R1, R2)}

Go(R1, R2)

{not pos(R1),pos(R2),cost(X+1)},

{pos(R1),cost(X),forbid(R1,R2)}

Go(R1, R2)

{not pos(R1),pos(R2),cost(X+5)}

A communication action sends a message to another agent or to the platform. A message

contains the name of the receiver of the message, the speech act or performative (e.g.

inform, request, etc.) of the message, and the content, where the content comes in the

form of a predicate. The 3-APL language instruction to achieve this is the

Send(receiver,performative,content) instruction.

The last type of action is called external action, and as its name says, it has the purpose of

executing actions external to the agent, i.e. the environment. The exact cause the action

will have in the environment may not be known to the agent and the only way to know its

effects may be through the execution of another external action which could be

appropriately called sense action. We can also always assume that we know the exact

result an external action and update the belief base accordingly.

In 3-APL external actions are the methods of the Java class that represents the

environment (i.e., the methods specify the effect of those actions in that environment). In

the language external actions are called by the Java(“Classname”,method,List)

instruction, where Classname is the name of the class representing the environment,

method is the name of a method of the class, and List is a variable well the return values

of the method will be saved. The method can be implemented to return the result of the

Figure 3. Agent Capabilities

 4

action in the list, or the list could for example be empty. In that case, an explicit sense

action would have to be executed to obtain the result of the action.

Goals

Goals represent the state of affaires desired by the agents; they are agent’s

motivation and purpose. Seen from the BDI point of view goals represent the desires. In

3-APL goals are represented by a conjunction of facts, these facts represent the beliefs we

would like to achieve. A goal driven agent will continue working until his desired belief

forms part of its belief base. The set of goals an agent has is called goal base. The initial

goal base of agent is preceded by the keyword GoalBase:, as seen in figure 4.

GOALBASE:

transportBox()

Plans

In order to achieve its goals an agent has a mental attitude called plan. In BDI

logic plans represent the intentions. Plans can be of three types: basic, abstract and

composite.

Basic plans can have the form of a basic action (mental, communication or external); a

belief base query to determine if a belief is true or false, which also has the function of

binding values to the variables in the plan; a AdoptGoal instructions which can adds a

new goal to the goal base; a DropGoal instruction which drops a goal; and a SKIP

instruction which basically does not do anything.

An abstract plan is an abstract representation of a plan which can be instantiated with a

(more concrete) plan during execution.

A composite plan is a plan that is formed by other plans (basic, abstract or composite).

They can be of the sequential type, which is a set of plans executed in sequential order; or

of the conditional type which present and if-then-else choice, where the condition is a

belief query and it chooses between to plans. The last type is the iterative type, in which a

plan will be executed iteratively while a belief holds true; this is done using a while-do

construct.

The specification of the initial plan base in 3-APL is preceded by the keyword

PlanBase:.

PLANBASE:

start(),

while not pos(0,0) do

pos(X,Y)?;

if X=0 then

Goto(X,Y-1)

else

Figure 4. Goal Base

 5

if Y=0 then

Goto(X-1,Y)

else

Goto(X-1,Y-1)

od

The plan base in figure 5 contains two plans: an abstract plan called start() and an

iterative plan formed from sequential and conditional sub-plans.

Reasoning Rules

Reasoning rules provide the means-end reasoning component of the agent. They

give the agent the capability of constructing or revising plans. From the belief that a plan

is sufficient to achieve a desired goal the agent concludes it should adopt the goal.

Reasoning rules are divided into four classes: reactive rules, which are used not only to

respond to the current situation but also to create new goals; plan-rules, which are used to

find plans to achieve goals; failure-rules, which are used to re-plan when plans fail; and

optimization-rules, which can replace less effective plans with more optimal plans.

The basic structure of a reasoning rule consists of a head which can be either a goal or a

plan, a body which is a plan and a guard which is a belief query.

The 3-APL implementation divides the reasoning rules in two types depending on their

purpose, these types are goal planning rules and plan revision rules.

Goal Planning Rules

As the name says the purpose of these rules is to create a plan capable of

satisfying a desired goal. The structure of a goal planning rule is the same as that of a

practical reasoning one, except the head of the rule is always a goal (which can be

empty). Informally a goal planning rule states that if we want to achieve the goal in the

head and we find ourselves in a situation matching the guard then we should implement

the plan in the body.

There can also be rules with an empty goal, which represent rules that will generate a

plan the moment the agent finds itself in a situation matching the guard, in other words

they are rules that react to situations, thus they are rules of the reactive.

In 3-APL language the rules are preceded by the Planning-Rules: keyword. Figure 6

shows an example of a rule, which will be fired if the goal transportBox() is in our goal

base and if the belief base contains belief matching the queries in the guard. It should be

noted that the variables in the guard will take the values of existing beliefs in the belief

base, so whenever a variable appears in the body of the rule it will be replaced by these

values.

Figure 5. Plan Base

 6

PLANNING-RULES

transportBox()<- pos(R1),box(R2),delpos(R3) |

goxy(R1,R2);GetBox();goxy(R2, R3);PutBox()

Plan Revision Rules

These rules are used to adopt, revise or drop plans and so in terms of the classes

specified before they can be of the failure (re-plan) class or of the optimization class.

They have the structure of a practical reasoning rule but the head is always a rule.

Informally for the failure case the rule means that if we are executing the plan in the head

but we cannot continue because the condition in the guard holds true then we should drop

the current plan and adopt the plan in the body of the rule. For the optimization case we

have that if we are currently using the plan in the head but this plan is not so efficient in

the current situation (specified by the guard) we should consider replacing it with the plan

in the body.

In the implantation of the 3-APL the rules are preceded by the keyword PR-Rules:. A

simple example can be seen in the second rule in figure 7, where if we are executing the

plan of going from room r1 to room r2 but both room are the same then we should instead

do nothing and skip to the next plan in the plan base. It should be noted that the variables

of the head will take values of a matching plan in the plan base and that this values will

hold for the guard and the body.

PR-RULES:

goxy(R1,R2) <- pos(R1),door(R1,R3),not R1 = R2 |

Go(R1, R3);goxy(R3,R2),

goxy(R1,R2) <- R1 = R2 | SKIP.

Deliberation Process

The deliberation process of the 3-APL agents is formed by a series of deliberation

operations, such as executing a rule, selecting a plan, etc. In other words the purpose of

this process is to modify the mental attitudes of the agent until it reaches its goals or

completes its plans. This process or program can also be seen as an interpreter that

determines the order in which the operations are performed. For example it can be

programmed to drop unachievable goals; or it can check whether a goal still exists during

a plan execution, to avoid continuing plan which goals has already been achieved or

dropped; it can also work as a garbage collectors to remove leftovers of plans no longer

existent. The use of two parallel plans could constitute a more complicated use. The

interpreter should decide if two plans for the same goal can be maintained at the same

time or if two goal with is own individual plans can be executed concurrently and at the

same time resolve any conflict of interests that may come with the parallelism. More

information about different uses can be found in [1].

Figure 6. Goal Planning rules

Figure 7. Plan revision rules

 7

The creators of 3-APL have propose the implementation of the interpreter as a meta-level

program that can be customized for the needs of the user. They proposed a set of

deliberations operations to work as basic operations (SelectPGrule,

SelectPlanRevisionrule, SelectPlan, and ExecutePlan) that can be combined with

sequential composition, conditional choices, tests (of beliefs, plans and goals) and

iterative loops to create more complex programs. The implementation of this meta-level

is briefly discussed in [1], and a more formal proposal is discussed in [3].

Even though the idea of a meta-level deliberation programming appears to be a very good

idea and is discussed at great length by the 3-APL creators, at the moment this does not

form part of the current implementation. In its place a static deliberation process is

provided that implements a cyclic order of the deliberation operations. An illustration of

the cycle can be seen in figure 8. Since this cycle is static it is by no mean applicable to

every situation, and so the agent behavior may give unexpected results. A way to

overcome this or at least to some extent, is modeling the mental attitudes of our agents

based on this cycle in such a way that we can steer them to our desired result.

The steps of the cycle are the following:

1. Find Plan Generation Rules that Match Goals

2. Remove Plan Generation Rules with atoms in head that exist in Belief Base

3. Find Plan Generation (PG) Rules that Match Beliefs

4. Select a Plan Generation (PG) Rule to Apply

5. Apply the Plan Generation (PG) Rule, thus adding a plan to the planbase

6. Find Plan Revision (PR) Rules that Match Plans

Figure 8. 3-APL deliberation cycle

 8

7. Find Plan Revision (PR) Rules that Match Beliefs

8. Select a Plan Revision (PR) Rule to Apply to a Plan

9. Apply the Plan Revision (PR) Rule to the Plan

10. Find Plans To Execute

11. Select a Plan To Execute

12. Execute the (first basic action of the) Plan

It can be seen clearly that this loop consists of three parts. The first part is the deliberation

about the goals (steps 1-5). The second part consists on the revision of the current plans

and thus provides the adaptation component (rules 6-9). Finally the last part consists on

the execution of the selected goals (steps 11-12). This cycle has the advantage that it

provides a somewhat reactive element, since it executes one plan action at the time;

however it has the disadvantage that no “real” long term plan is created. The advantage of

a real planning stage is that plans can be developed and evaluated and subsequent

backtracking over the plans can take place when the plan was not satisfactory. The 3-

APL cycle does not provide means for backtracking, once a rule has been applied the

current plan changes and the agent has to move from the newly created plan. One way to

provide some level of backtracking is to increase the complexity and the number of the

agent rules but this can make things quite messy.

Communication

As we saw before, agents can talk with each other using communication actions,

and this action is executed using the instruction Send(receiver,performative,content). If

an agent sends a message to another agent the belief base of both agents is updated, the

sender is updated by the formula sent(Receiver, Performative, Content), while the

receiver gets the received(Sender,Performative, Content).

The first thing we can notice about the communication level in 3-APL is that it does not

provide means for processing the message content, so the user has to create action and

rules to be able to extract the content. Also it does not provide any method to determine

the trust level of the agents in the environment so again is up to the user to define rules

for this. Another interesting point is that even though the message contains a

performative element, 3-APL does not have a definition for performatives so as before

the user has to define rules for this (there is one exception in which the environment can

inform the platform of its capabilities and other agents can ask the platform about this).

This lack of a communication protocol makes 3-APL more suited for applications where

agent cooperation and negotiation is not necessary. It should be noted that ongoing

research is concerned with communication, e.g. the one described in [8].

With all these shortcomings and apparent lack of complexity the communication

structure is still FIPA compliant and so 3-APL agent can communicate with agents in

other FIPA compliant platforms such as JADE(X), however, as 3-APL does not support

ontologies, messages between platforms have to be kept as simple as possible in order to

prevent misunderstandings.

 9

Formal Semantics

Formal semantics for 3-APL have been defined in Plotkin’s operation semantics

[1][6] and in Z [7]. These semantics specify the transitions between the agent’s

configurations by means of transition rules.

When comparing the formal semantics with its implementation we can see that the

implementation follows heavily the formal semantics, that the agent configuration

corresponds to its mental state and that the transitions correspond to applying the

reasoning rules.

MAS Developing Methodologies

Some work has been done in using multi-agent systems developing

methodologies with 3-APL. Table 2 shows the relationship between the elements of the

GAIA methodology and 3-APL. As you can see, it does not seem to be an ideal match,

especially in the Role Models part. On the other hand table 3 shows the relationship with

the Prometheus method and in this case the match looks more convincing..

Gaia 3APL

The Environment Model Java Class

The Roles Model

– Responsibility

– Permission

beliefs, goals, plans and actions

– goals and plans

– beliefs and actions

The Interaction Model communication and external actions

Organizational structure all components

– Topology structure – communication structure, beliefs,

goals, plans and actions

– Control structure – algorithms and reasoning rules

Table 2. GAIA relationship

 10

3-APL Platform

3-APL is not only the language but the platform that allows programming,

deployment and execution of the agents. The 3-APL platform is also in charge of the

transportation of the communication messages; and also provides information about the

existing agents to other agents through the agent management system (AMS). Moreover,

once the agents are running it provides monitoring tools, such as a sniffer, for the

message exchange and specific windows to monitor the mental states of the agents. It

also provides means for step by step monitoring. A more detailed description can be

found in [4]. Figure 9 illustrates the agent platform architecture.

The agent environment forms part of the 3-APL platform and it comes in form of a

programmable Java class, which as we stated provides the available external actions of

the agents. In particular, the environment is modeled as plugin to the platform. This is a

systematic way to interface between the 3APL platform and Java classes. The plugin

facilitates the interaction between individual agents running on the platform and the

Prometheus 3APL

Plan Descriptions:

• Triggering event Guards of reactive rules

• Plan steps • Plan expressions

• Context of performing plans • Guards of rules, test actions, action

pre-conditions

• Data used/produced • Beliefs, Java data, action post-

condition, communication

Event Descriptions:

• Event purpose • Reasoning rules

• Data carried by event • Substitutions in reasoning rules

Data Descriptions:

• Data structures • Terms, atoms, rules, Java data

• Methods manipulating data • Actions

Table 3. Prometheus relationship

Figure 9. 3-APL Platform

 11

instantiation of the Java classes. For the user interaction 3-APL provides a series of

classes with graphical I/O purposes. Figure 10 shows an example of the graphical output

interface.

On the specification side 3-APL requires Java 1.5 to run, and it is it is easy to install by

downloading and executing an 850kb .jar file. During deployment time it can be set as it

can be set as a server to host multiple agents or as a client.

3-APL Tools

In the last section we saw that the 3-APL platform is the main existing tool that

implements 3-APL (figure 11 shows a screenshot of it). However another important

version exists, called 3-APL-M, which is for use in mobile equipments and can run in any

Java enabled mobile device. Since some devices have limited space capabilities it is

possible to divide the processing in a server module that runs in J2SE and in a mobile

module that runs in J2ME. 3-APL has found use in robots to some success [9].

Comparisons

Figure 10. 3-APL graphical I/O example

Figure 11. 3-APL platform GUI

 12

Table 4 shows a comparison between different agent languages. The first column

shows the programming languages in which the agent languages have been implemented.

The second column shows whether the language has a model of formal semantics. The

third column refers to industrial applications. It can be seen that 3-APL has not found any

industrial strength application, yet.

 Implementations Formal Semantics
Industrial-strength

applic.

PRS UMPRS, PRS-CL, others No Yes

dMARS

In 1995, AAII implemented a C++ platform

running on Unix; in 1997 dMARS was

ported to Windows/NT

Operational Yes

JACK Java No Unmanned vehicle

JAM Java No No

Jadex Java Operational Yes

AS(L) SIM Speak, AgentTalk, Jason Operational Virtual environments

3APL Java and Prolog Operational; meta-level No

Dribble No
Operational, dynamic

logic-based
No

Coo-BDI Coo-AgentSpeak Operational No

Table 5 extends the above comparison to basic components, the operation cycle,

ontologies, and to whether the agent languages realize dynamical resolution. 3-APL is the

only language that has practical reasoning rules which can be a very powerful tool.

 Basic components Operation cycle Ont Dyn

PRS Standard Standard No No

dMARS Standard Standard No No

JACK
Standard + capabilities (that aggregate functional

components) + views (to easily model data)
Standard No No

JAM

Standard + observer (user-specified declarative procedure

that the agent interleaves between plan steps) + utility of

plans

Utility-based No Yes

Jadex
Beliefs + goals + plans + capabilities (that aggregate

functional components)
Standard Yes No

AS(L) Standard Standard; efficient Yes Yes

3APL
Beliefs, plans, practical reasoning rules, basic action

specifications
Think-act No Yes

Table 4. Comparison between agent languages 1.

 13

Dribble
Beliefs, plans, declarative goals, practical reasoning rules,

goal rules, basic action specifications
Think-act No Yes

Coo-BDI
Standard + cooperation strategy (trusted agents + plan

retrieval and acquisition policies) + plans’ access specifiers

Perceive-cooperate-

act
No Yes

Conclusions

We think it became apparent that 3-APL is a powerful tool for the creation of

intelligent agents, especially its practical reasoning rules provide ways of creating very

complex mechanisms. However the use of a static deliberation cycles limits its

functionality and forces the user to explode the number of rules to balance this out, which

complicates the task of agent implementation.

The lack of a strong communication protocol also is a further point which lacks in the

language, complicating the task of creating coordination and cooperation between agents.

We also find lacking the absence of agent actions dedicated to computer processing; right

now if an agent requires an action not related with changing its mental state it has to be

done through the environment. For example it would be nice to have agents in which part

of its executing plan will consist on running some classification algorithm or some

numerical method which is only owned by the agent and so it could be encapsulated in its

program.

3-APL is a comparatively new model (first publications date back to 1998). It has been

noted that there are no industrial-strength applications yet, which could boost its

development.

References

[1] Dastani, M.M., Riemsdijk, M.B. van, & Meyer, J-J.Ch. (2005). Programming Multi-Agents Systems in

3APL. In R. H. Bordini, M. Dastani, J. Dix, & A El Fallah Seghrouchni (Eds.), Multi-Agent

Programming (Languages, Platforms and Applications) (pp. 39-67). New York: Springer Science.

[2] Mehdi Dastani, 3APL: A Programming Language for Multi-agent Systems (Syntax),

http://www.cs.uu.nl/docs/vakken/map/slides/3apl-Syntax.pdf, accessed November 18, 2006

[3] M. Dastani, F. de Boer, F. Dignum, J.J. Meyer, Programming Agent Deliberation: An Approach

Illustrated Using the 3APL Language. Proceedings of the Second International Conference on

Autonomous Agents and Multiagent Systems (AAMAS'03), Melbourne, July 2003, ACM Press, 2003.

[4] Mehdi Dastani, 3APL Platform: User Guide, 19th January 2006,

www.cs.uu.nl/3apl/download/java/userguide.pdf; accessed November 18, 2006. BNF specification of

3APL programming language.
.

[5] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J-J. Ch. Meyer. Formal Semantics for an Abstract Agent

Programming Language. In Intelligent Agents IV: Proceedings of the Fourth International Workshop on Agent

Theories, Architectures and Languages, Lecture Notes in Artificial Intelligence 1365, pages 215–229. Springer-

Verlag, 1998

[6] J.J. Meyer, (Cognitive) Agents Agent metaphor, http://www.siks.nl/act/jj-siksday-2005.pdf, accessed

Table 5. Comparison between agent languages 2.

 14

November 18, 2006.

[7] M. d’Inverno, K. V. Hindriks, and M. Luck, A formal architecture for the 3APL agent programming

language, in Proc. of ZB’00, 2000, pp. 168–187.

[8] J. van der Ham, Extending 3APL with Communication. Master Thesis Cognitive Artificial Intelligence,

Utrecht University.

[9] Verbeek Marko, 3APL as Programming Language for Cognitive Robots. Master Thesis, Utrecht

University.

