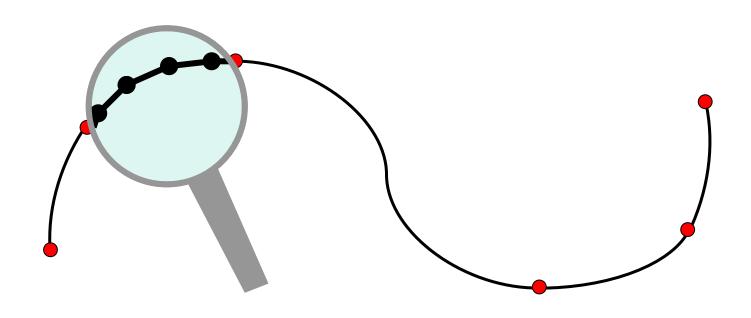
Computergrafik SS 2008 Oliver Vornberger

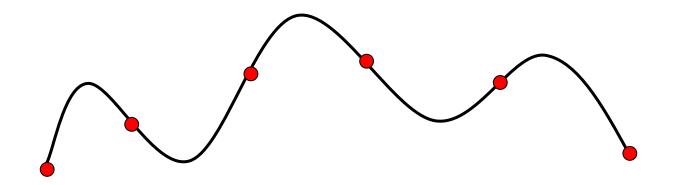
Kapitel 7: 2D-Kurven

Spezifikation einer Kurve



Stützpunkte P₀, P₁, ..., P_n

Algebraischer Ansatz

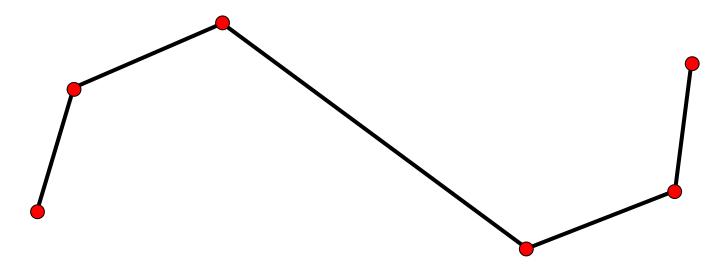


Bestimme n+1 Koeffizienten für Polynom n-ten Grades

$$y = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$

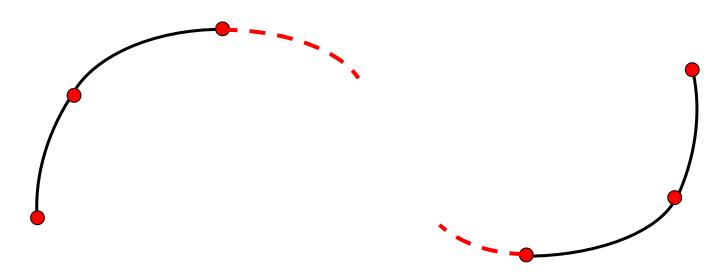
Oszillation! Rechenaufwand! Rundungsfehler!

lineare Splines



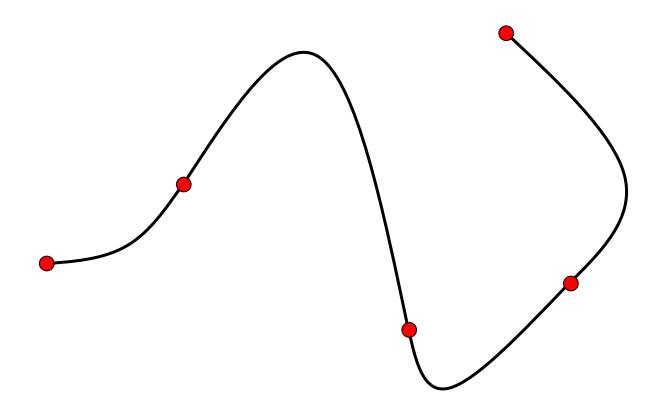
verbinde zwei aufeinanderfolgende Punkte durch eine Gerade

quadratische Splines

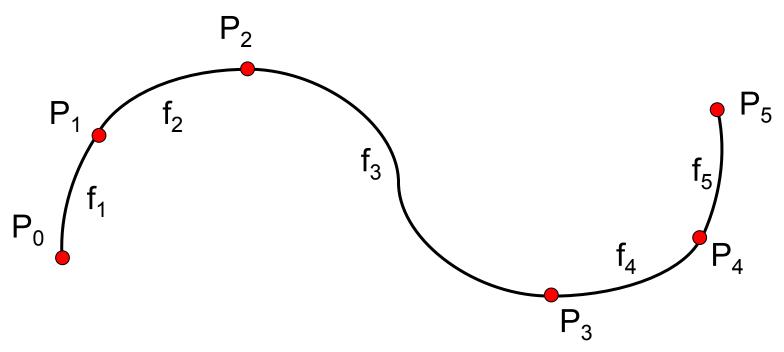


verbinde zwei aufeinanderfolgende Punkte durch eine Kurve 2. Grades

quadratische Splines

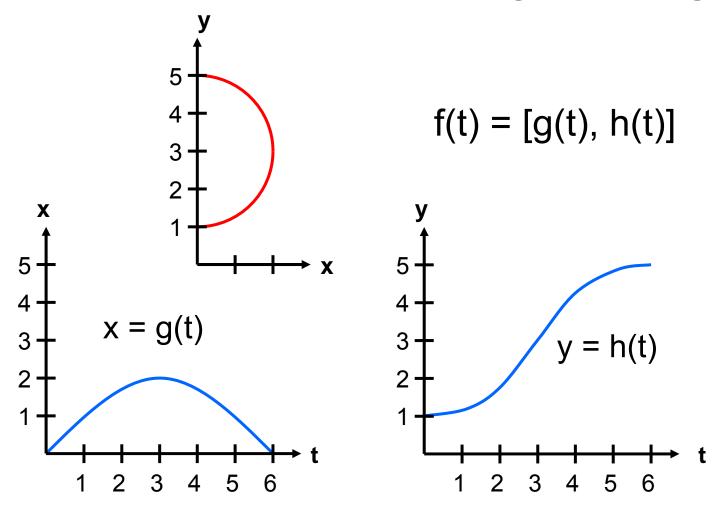


kubische Splines

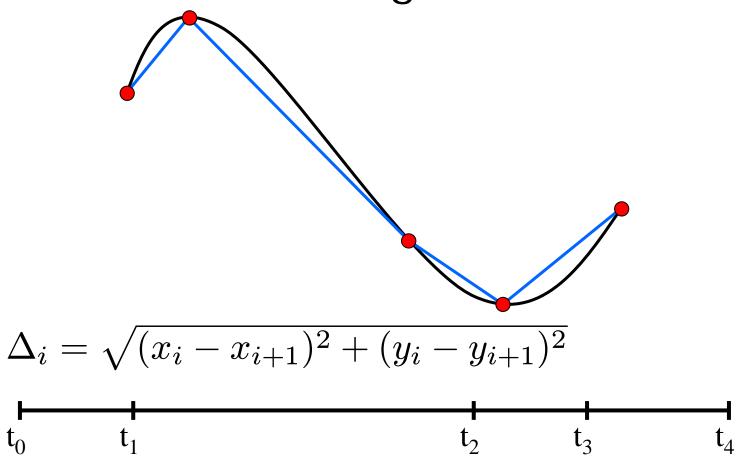


Verbinde zwei aufeinanderfolgende Punkte durch eine Kurve 3. Grades

Parametrisierte Kurvengleichung



Intervallgrenzen



Kurvenabschnitte

Gesucht ist pro Intervall i, i=1, ..., n

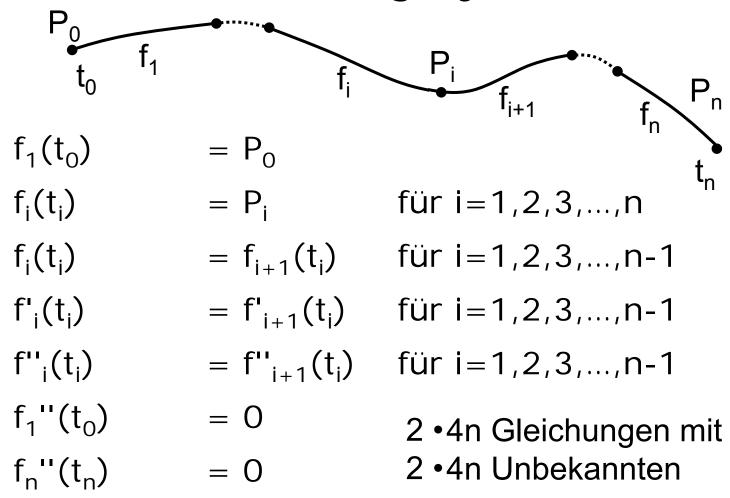
$$f_i(t) = a_i + b_i \cdot t + c_i \cdot t^2 + d_i \cdot t^3$$

genauer:

$$g_{i}(t) = ag_{i} + bg_{i} \cdot t + cg_{i} \cdot t^{2} + dg_{i} \cdot t^{3}$$

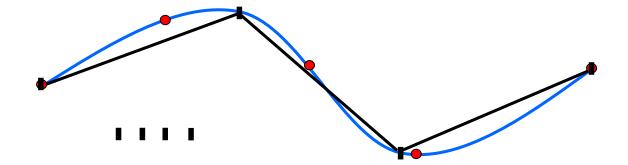
$$h_i(t) = a^h_i + b^h_i \cdot t + c^h_i \cdot t^2 + d^h_i \cdot t^3$$

Gleichungssystem



Approximation

Gegeben n+1 Stützpunkte P₀, P₁, ..., P_n
Berechne Kurvenabschnitte f₁, f₂, ..., f_n
Bestimme Zahl der Interpolationspunkte k
Verteile längs der Kurvenabschnitte
Zeichne k-1 Geradenabschnitte



Java-Applet zu kubischen Splines

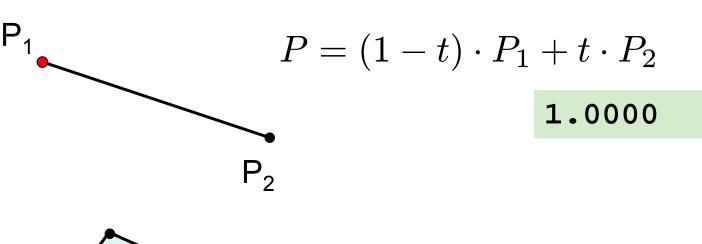
~cg/2008/skript/Applets/Splines/App.html

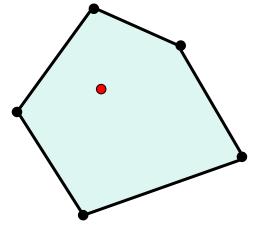
Bewertung von Splines

bei vielen Stützpunkten:

- hoher Rechenaufwand zur Lösung des Gleichungssystems
- Kein lokaler Einfluss möglich

Kontrollpunkte



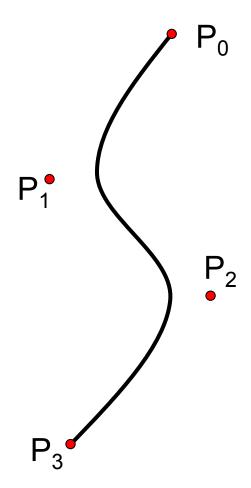


$$P = \sum_{i=0}^{n} m_i \cdot P_i$$

Bézier-Kurven

Pierre Bézier 1911-1999 Ingenieur bei Renault

Paul deCasteljau 1930 -Ingenieur bei Citroen



Bernstein-Polynome

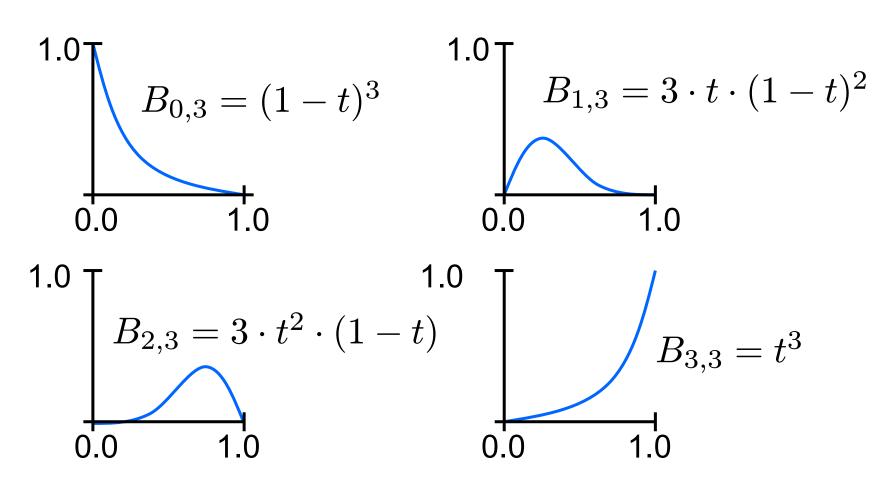
n+1 Kontrollpunkte

Jeder Kontrollpunkt P_i wird gewichtet mit Bernstein-Polynom B_i

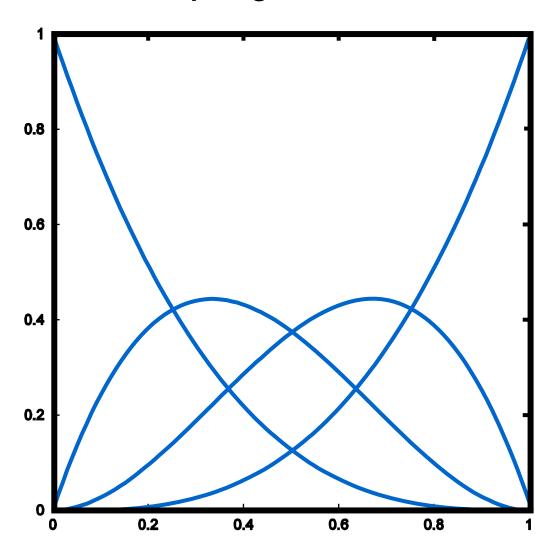
$$P(t) = \sum_{i=0}^{n} B_{i,n}(t) \cdot P_i, \quad 0 \le t \le 1$$

$$B_{i,n}(t) = \binom{n}{i} \cdot t^{i} \cdot (1-t)^{n-i}, \ i = 0, ..., n$$
$$= \frac{n!}{i! \cdot (n-i)!} \cdot t^{i} \cdot (1-t)^{n-i}$$

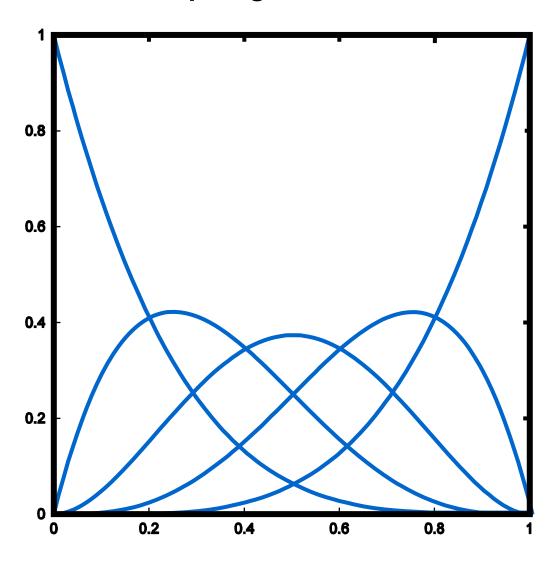
Bernstein-Polynome 3. Grades



Bernsteinpolynome 3. Grades



Bernsteinpolynome 4. Grades



Eigenschaften der Bernstein-Polynome

alle Bernsteinpolynome sind positiv auf [0,1]

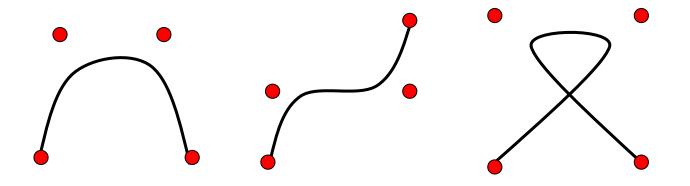
$$\sum_{i=0}^{n} B_{i,n}(t) = 1 \qquad \text{für jedes feste t}$$

$$B_{i,n}(t) = B_{n-i,n}(1-t)$$

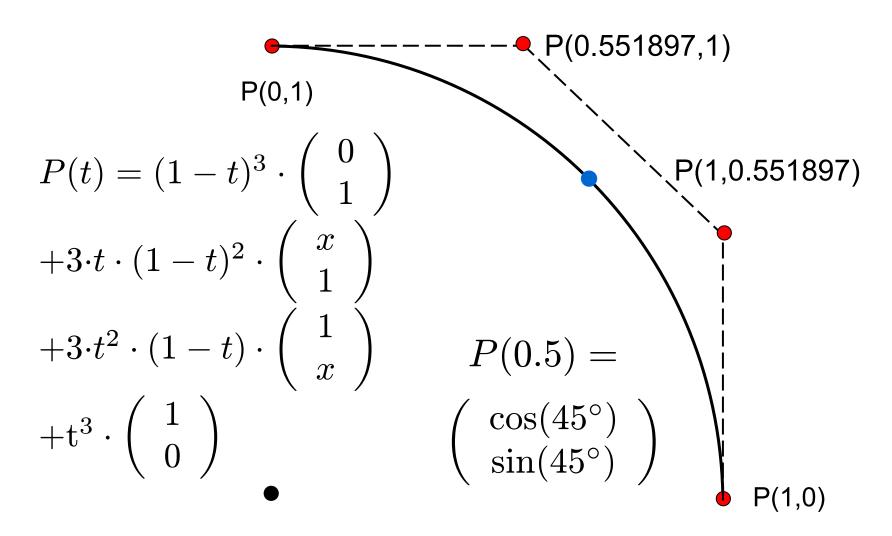
Maxima von $B_{i,n}(t)$ bei $t = \frac{i}{n}, i = 0, \dots, n$

$$\frac{dB_{i,n}(t)}{dt} = n \cdot (B_{i-1,n-1}(t) - B_{i,n-1}(t)), i > 0$$

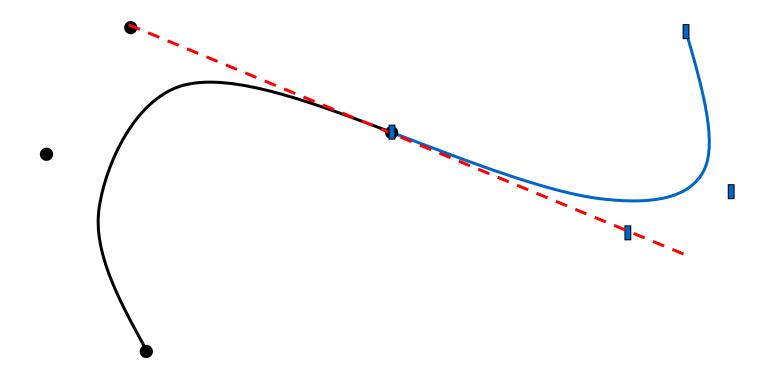
Beispiele für Bézierkurven



Approximation von Viertelkreis



Bézier-Kurven aneinandersetzen



Bézier-Kurve nach de Casteljau

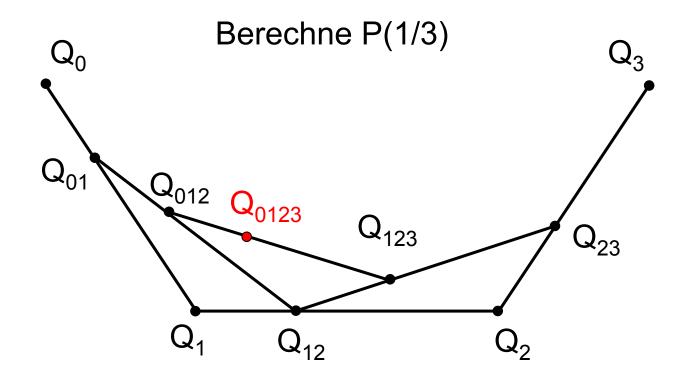
$$P_{0,n}(t) = (1-t) \cdot P_{0,n-1}(t) + t \cdot P_{1,n}(t)$$

$$P_{0,3}(\frac{1}{3})$$

$$\frac{2}{3} \cdot P_{0,2}(\frac{1}{3}) + \frac{1}{3} \cdot P_{1,3}(\frac{1}{3})$$

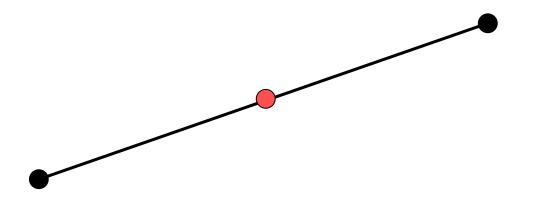
$$\frac{2}{3} \cdot P_{0,1}(\frac{1}{3}) + \frac{1}{3} \cdot P_{1,2}(\frac{1}{3}) \stackrel{2}{3} \cdot P_{1,2}(\frac{1}{3}) + \frac{1}{3} \cdot P_{2,3}(\frac{1}{3})$$

Berechnung nach de Casteljau



halbiere

```
Point halbiere(Point P1, Point P2){
  Point P = new Point();
  P.x = (P1.x + P2.x)/2;
  P.y = (P1.y + P2.y)/2;
  return P;
}
```



Rekursion nach de Casteljau

```
void bezier(Point P0, Point P1,
            Point P2, Point P3, int tiefe) {
if (tiefe == 0) drawLine(P0, P3); else {
    tiefe--;
    Point P01
                 = halbiere(P0, P1);
    Point P12 = halbiere(P1, P2);
    Point P23 = halbiere(P2, P3);
    Point P012 = halbiere(P01, P12);
    Point P123 = halbiere(P12, P23);
    Point P0123 = halbiere(P012, P123);
    bezier(P0, P01, P012, P0123, tiefe);
                                                   P_{23}
    bezier(P0123, P123, P23, P3, tiefe);
                                            P<sub>123</sub>
                                        P_{0123}
                                     P<sub>012</sub>
                                                     28
```

Java-Applet zu Bézier-Kurven

~cg/2008/skript/Applets/Splines/App.html

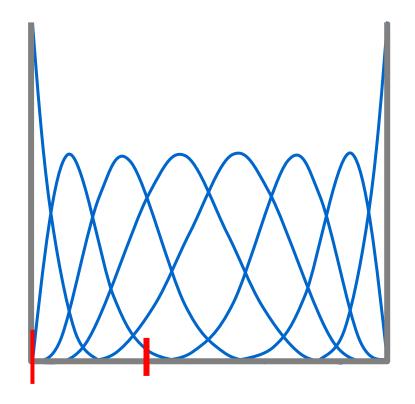
Bewertung von Bézier-Kurven

- Grad der Polynome ist abhängig von Zahl der Kontrollpunkte
- Alle Kontrollpunkte wirken auf die gesamte Kurve

Wunsch:

- fester Polynomgrad
- lokaler Einfluss

Wunsch: Lokaler Einfluss



z.B. Einfluss von maximal vier Kontrollpunkten

B-Splines

- wähle n+1 Kontrollpunkte P₀, P₁, ..., P_n
- wähle k
- wähle Knotenvektor t₀, t₁, t₂, ..., t_{n+k}
- konstruiere n+1 Gewichtsfunktionen
- Gewichtsfunktion wirkt auf max. k Abschnitte
- Gewichtsfunktion ist Polynom vom Grad k-1 (abschnittsweise)

Konstruktion von B-Splines

$$T = (t_0, t_1, \dots, t_{n+k}), t_j \le t_{j+1}$$

$$N_{j,1}(t) = \begin{cases} 1 & \text{falls } t_j \le t < t_{j+1} \\ 0 & \text{sonst} \end{cases} \qquad j = 0, \dots, n+k-1$$

$$N_{j,i}(t) = \frac{t - t_j}{t_{j+i-1} - t_j} \cdot N_{j,i-1}(t) + \frac{t_{j+i} - t}{t_{j+i} - t_{j+1}} \cdot N_{j+1,i-1}(t)$$

$$P(t) = \sum_{i=0}^{n} N_{i,k}(t) \cdot P_i$$

Beispiel für Knotenvektor

$$t_{j} = \begin{cases} 0 & \text{falls } j < k \\ j - k + 1 & \text{falls } k \le j \le n \\ n - k + 2 & \text{falls } j > n \end{cases}$$
$$j \in \{0, \dots, n + k\} \qquad t \in [0, n - k + 2]$$

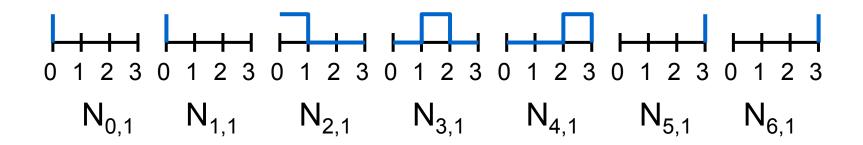
Beispiel: $n=4, \ k=3$

Knotenvektor: T = (0, 0, 0, 1, 2, 3, 3, 3)

Beispiel: n=8, k=4

Knotenvektor: T = (0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6)

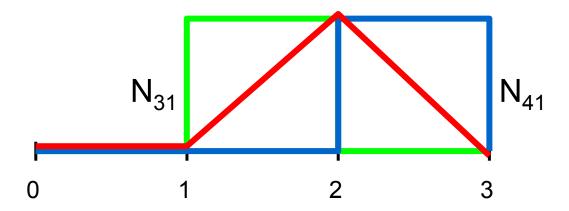
Konstruktion von $N_{i,1}$ für n=4, k=3



n+k Ausgangsfunktionen

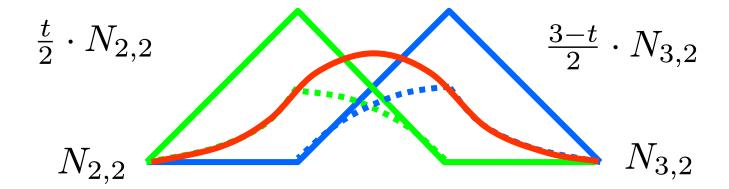
Konstruktion von $N_{3,2}$

$$N_{32} = (t-1) \cdot N_{3,1} + (3-t) \cdot N_{4,1}$$



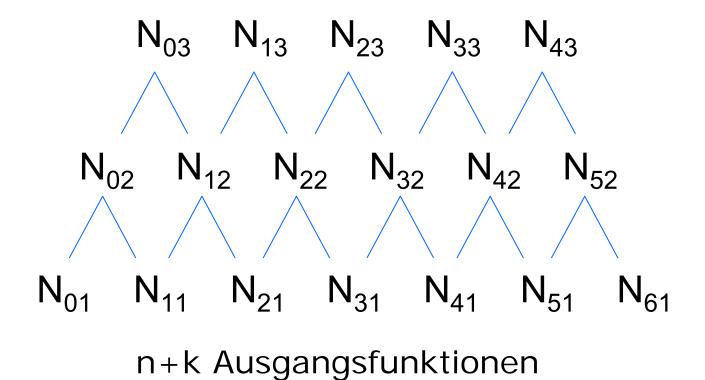
Konstruktion von N_{2,3}

$$N_{2,3} = \frac{t}{2} \cdot N_{2,2} + \frac{3-t}{2} \cdot N_{3,2}$$

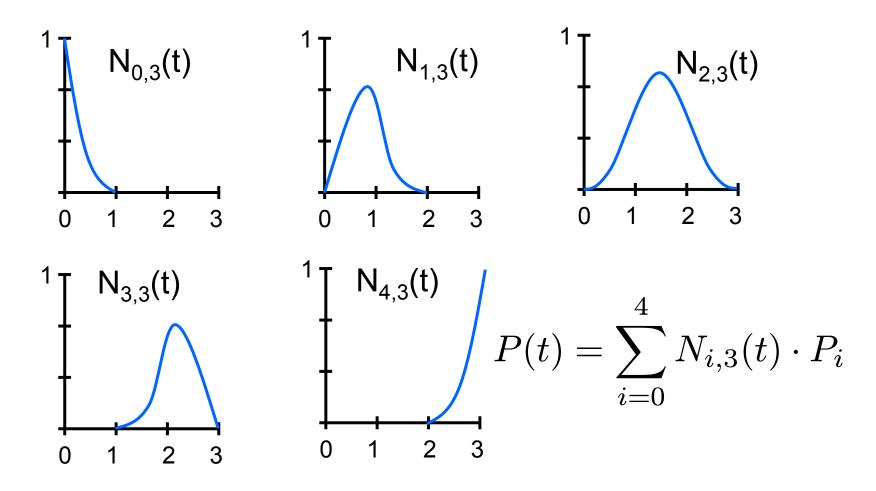


Konstruktion von N_{i,k}

n+1 Gewichtsfunktionen



Gewichtspolynome für n=4, k=3



Sonderfall

$$k = n + 1$$

$$T = (\underbrace{0, ..., 0}_{k \text{ mal}}, \underbrace{1, ..., 1}_{k \text{ mal}}).$$

$$N_{i,k}(t) = \frac{(k-1)!}{i! \cdot (k-1-i)!} \cdot t^i \cdot (1-t)^{k-1-i}$$

$$= \binom{n}{i} \cdot t^i \cdot (1-t)^{n-i} = B_{i,n}(t)$$

⇒ Bernstein-Polynome sind Spezialfall von B-Splines

Java-Applet von B-Splines

~cg/2008/skript/Applets/Splines/App.html

Bewertung von B-Splines

· tolle Sache!

aber:

- kein Kreis
- nur invariant bzgl. affiner Abbildungen

Affine Abbildung

$$\vec{y} = A \cdot \vec{x} + \vec{b}$$

Erhalten bleiben:

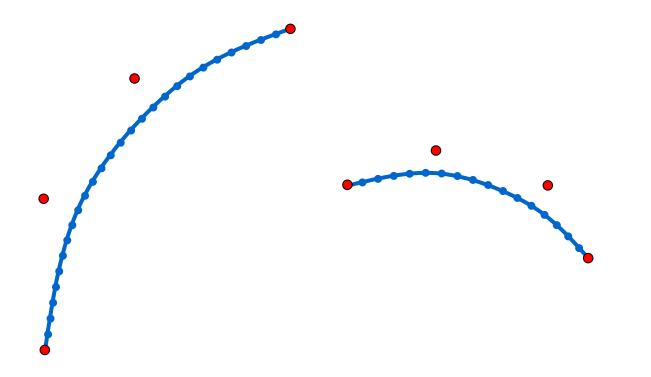
- Gradlinigkeit
- Parallelität von Geraden

nicht erhalten bleiben:

- Winkel
- Flächeninhalte

- Translation
- Skalierung
- Rotation sind affine Abbildungen

Invarianz bzgl Abbildung



B-Splines sind nicht invariant unter Projektion!

NURBS

Non Uniform t_i nicht äquidistant

Rational Gewichtsquotient

B-Splines Gewichtsfunktion

NURBS

Punkte P_i Knoten t_j Gewichte h_i

$$\sum_{i=0}^{n} N_{i,k}(t) = 1 \qquad \sum_{i=0}^{n} h_i \cdot N_{i,k}(t) = z$$

normiere auf 1

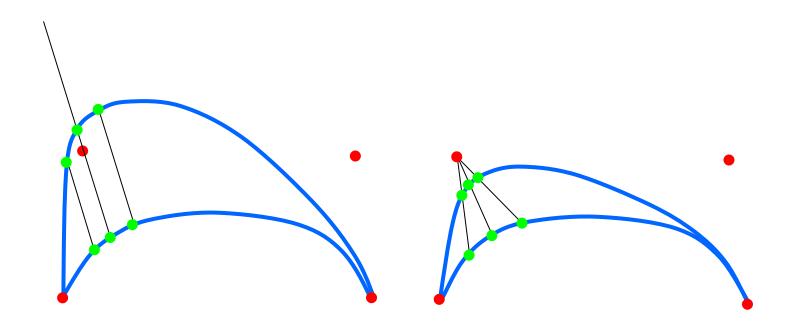
$$R_{i,k}(t) = \frac{h_i \cdot N_{i,k}(t)}{\sum_{j=0}^{n} h_j \cdot N_{j,k}(t)}$$

$$P(t) = \sum_{i=0}^{n} R_{i,k}(t) \cdot P_i$$

Auswirkung der NURBS-Gewichte



Möglichkeiten der Einflussnahme



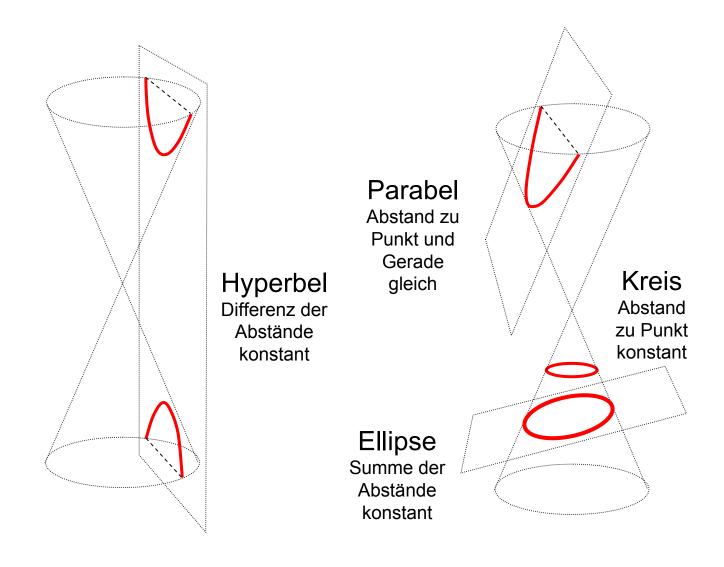
Kontrollpunkt verschieben:

Punkte wandern parallel

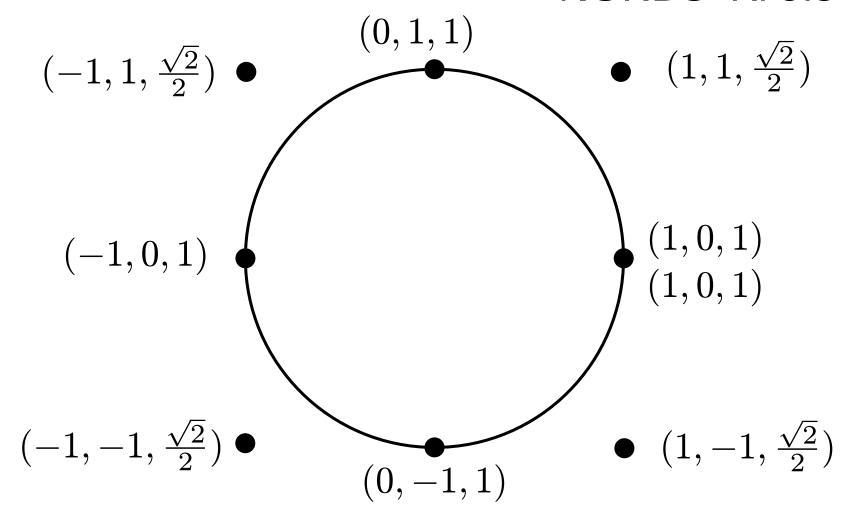
Gewicht erhöhen:

Punkte wandern auf Kontrollpunkt zu

Kegelschnitte



NURBS-Kreis



Knotenvektor: 0,0,0,1,1,2,2,3,3,4,4,4

Viertelkreis durch NURBS

$$P_x(t) = \left(\frac{16t^2 - 8t + 1 + \frac{\sqrt{2}}{2}(-32t^2 + 8t)}{16t^2 - 8t + 1 + \frac{\sqrt{2}}{2}(-32t^2 + 8t) + 16t^2}\right)$$

$$P_x(t) = \left(\frac{\frac{\sqrt{2}}{2}(-32t^2+8t)+16t^2}{16t^2-8t+1+\frac{\sqrt{2}}{2}(-32t^2+8t)+16t^2}\right)$$

korrekter Kreis, denn $P_x^2(t) + P_y^2(t) =$

$$\left(\frac{16t^2 - 8t + 1 + \frac{\sqrt{2}}{2}(-32t^2 + 8t)}{16t^2 - 8t + 1 + \frac{\sqrt{2}}{2}(-32t^2 + 8t) + 16t^2}\right)^2 + \left(\frac{\frac{\sqrt{2}}{2}(-32t^2 + 8t) + 16t^2}{16t^2 - 8t + 1 + \frac{\sqrt{2}}{2}(-32t^2 + 8t) + 16t^2}\right)^2 = 1$$

NURBS + homogene Koordinaten

$$P(t) = \sum_{i=0}^{n} \frac{h_i \cdot N_{i,k}(t)}{\sum_{j=0}^{n} h_j \cdot N_{j,k}(t)} \cdot P(i)$$

Punktkoordinaten → Homogene Koordinaten

$$\begin{pmatrix} x_i \\ y_i \end{pmatrix} \rightarrow \begin{pmatrix} x_i \\ y_i \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} h_i \cdot x_i \\ h_i \cdot y_i \\ h_i \end{pmatrix}$$

$$P_i \longrightarrow P'_i$$

NURBS + homogene Koordinaten

verwende B-Splines:

$$P'(t) = \sum_{i=0}^{n} N_{i,k}(t) \cdot P'_{i}$$

1.+2. Komponente:

$$\sum_{i=0}^{n} h_i \cdot N_{i,k}(t) \cdot P_i$$

3. Komponente:

$$\sum_{j=0}^{n} h_j \cdot N_{j,k}(t)$$

Punktkoordinaten ← Homogene Koordinaten

$$\begin{pmatrix} x/z \\ y/z \end{pmatrix} \leftarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\frac{\sum_{i=0}^{n} h_i \cdot N_{i,k}(t) \cdot P_i}{\sum_{j=0}^{n} h_j \cdot N_{j,k}(t)} = \sum_{i=0}^{n} R_{i,k}(t) \cdot P_i = P(t)$$
₅₃

Wer kurvt am besten?

Splines Bézier B-Splines NURBS

konstanter Polynomgrad	+	I	+	+
lokaler Einfluss	I	I	+	+
effiziente Speicherung	+	+	+	+
Kreis möglich	-	I	_	+
invariant bzgl. Affine Abb.	+	+	+	+
invariant bzgl. Projektion	_	-	_	+