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Abstract
Animal populations are not constant in space and time but reveal tem-
poral oscillations. Since the beginning of the 20th century this is a
widely accepted fact [Elton, 1924, Lotka, 1925, Volterra, 1926]. Volterra
[1931] and Lotka [1934] suggested the first mathematical predator-prey
model for describing these oscillations. Within the following decades
many different new models have been proposed and several population
cycles of various species have been observed. Murray [1989] [or Mur-
ray, 2008, 2003] gives a good overview over many models. Especially
the population cycles of the snowshoe hare and the Canadian lynx have
been studied extensively and are said to be the best documented ones
[MacLulich, 1937, Elton and Nicholson, 1942, Chitty, 1948, 1950, Fin-
erty, 1979, Smith, 1983, Krebs et al., 1986, Smith et al., 1988, Sinclair
et al., 1988, 1993, Ranta et al., 1997b, Krebs et al., 2001].

The monitoring of wildlife animal populations provides mean popula-
tions sizes for large spatial domains. In the case of many time series
of the snowshoe hare population these domains have the area of sev-
eral thousand square kilometres. Motivated by this, we analyse the
effect of the size and position of spatial domains on the mean animal
populations within these domains. No real observations but a mathe-
matical predator-prey-model are used for this purpose. The model was
used by Petrovskii and Malchow [1999] [see also Murray, 1989, Sherratt
and Smith, 2008] and describes the propagation and interaction of a
predator and a prey species. It is formed by two coupled partial differ-
ential equations: Both species diffuse with the same diffusion coefficient,
the prey grows logistically, both equations are coupled by a Michaelis-
Menten-Kinetics term [Michaelis and Menten, 1913] as hunt-term and
the mortality term of the predator is a first order kinetic. For the ap-
propriate choice of parameters, the population densities oscillate either
chaotically or regularly depending on the initial conditions. After dis-
cussing the model and the used numeric tools in chapter 2, we introduce
two adjacent spatial domains, change their size - relative to each other
and relative to the whole space - and position and compute average
population densities which we compare in chapter 3.

The pde system offers different possibilities to vary parameters, initial
conditions and the model itself. Uncoupled from the practical motiva-
tion, parameter and model variations and their results are discussed and
presented in the chapters 4, 5 and 6. In chapter 4 we vary especially the
prey’s growth rate and the predator’s mortality. The results are travel-
ling waves [Sherratt and Smith, 2008], unexpected less regular regular
oscillations and chaotic oscillations which evolve slightly different than
those observed before. Further in chapter 5 we introduce noise with
the intention to produce more realistic regular oscillations which we can
use for further works on the topic of chapter 3. However, we hit some
snags and discuss the results without working with the both spatial do-
mains and computing average population densities. Finally in chapter
6 spatio-temporal chaos lies in the focus. We observe areas of regular
oscillations in a chaos-dominated system and try to reproduce results of
Petrovskii et al. [2010].



Zusammenfassung
Tierpopulationen sind nicht zeitlich und räumlich konstant, sondern
zeigen Schwingungen in der Zeit. Seit Anfang des 20. Jahrhunderts
ist dies eine weitgehend akzeptierte Tatsache [Elton, 1924, Lotka, 1925,
Volterra, 1926]. Als erste schlugen Volterra [1931] und Lotka [1934] ein
mathematisches Modell zur Beschreibung dieser Oszillationen vor. In-
nerhalb der folgenden Jahrzehnte wurden viele verschiedene neue Model-
le aufgestellt und etliche Populationszyklen unterschiedlicher Tierarten
aufgezeichnet. Murray [1989] [or Murray, 2008, 2003] bietet einen guten
Überblick über einige dieser Modelle. Besonders die Populationszyklen
des Schneeschuhhasen und des Kanadischen Luchses wurden ausführlich
studiert und sollen zu den am umfangreichsten dokumentierten gehören
[MacLulich, 1937, Elton and Nicholson, 1942, Chitty, 1948, 1950, Fin-
erty, 1979, Smith, 1983, Krebs et al., 1986, Smith et al., 1988, Sinclair
et al., 1988, 1993, Ranta et al., 1997b, Krebs et al., 2001].

Im Allgemeinen liefert die Beobachtung wild lebender Tierpopulatio-
nen lediglich über ein großes räumliches Gebiet gemittelte Populations-
größen. Im Fall von Zeitreihen des Schneeschuhhasen umfassen diese
Gebiete mehrere tausend Quadratkilometer. Hierdurch motiviert analy-
sieren wir den Effekt der Größe und Position solcher Gebiete auf die
dort drin ermittelten mittleren Tierpopulationen. Hierfür werden keine
realen Tierbeobachtungen sondern ein mathematisches Räuber-Beute-
Modell verwandt. Das Modell wurde bereits in Petrovskii and Malchow
[1999] genutzt [siehe auch Murray, 1989, Sherratt and Smith, 2008] and
beschreibt die Ausbreitung und Interaktion einer Räuber- und einer
Beutespezies. Es besteht aus zwei gekoppelten partiellen Differential-
gleichungen: Beide Spezies diffundieren räumlich mit dem gleichen Dif-
fusionskoeffizienten, die Beute wächst logistisch, beide Gleichungen sind
über eine als Jagd-Term genutzte Michaelis-Menten-Kinetik miteinander
verbunden und der Räuber stirbt mit einem Reaktionsterm erster Ord-
nung. In Kapitel 2 werden das Modell und die genutzten numerischen
Hilfsmittel vorgestellt. Bei passend gewählten Parametern schwingen
die Populationsdichten abhngig von den Anfangsbedingungen entweder
chaotisch oder geordnet. Anschließend führen wir in Kapitel 3 zwei
räumlich benachbarte Domänen ein, verändern ihre Größe - relativ zu-
einander und relativ zum gesamten Raum - und ihre Position und berech-
nen mittlere Populationsdichten, die wir miteinander vergleichen.

Das gegebene System an partiellen Differentialgleichungen bieten ver-
schiedene Möglichkeiten Parameter, Anfangsbedingungen und das Mo-
dell selbst zu verändern. Losgelöst von der praktischen Motivation
diskutieren und präsentieren wir Variationen der Parameter und des
Modells und deren Auswirkungen in den Kapiteln 4, 5 und 6. In Kapi-
tel 4 konzentrieren wir uns speziell auf die Variation der Wachstums-
rate der Beute und der Sterberate des Räubers. Die Ergebnisse sind
Travelling Waves (dt.: reisende Wellen) [Sherratt and Smith, 2008],
unerwartet weniger regelmäßige geordnete Schwingungen und chaoti-
sche Schwingungen, die sich etwas anders entwickeln als die bisher beo-
bachteten. Weiter in Kapitel 5 führen wir Noise (dt.: Rauschen) mit
der Intention ein, realistischere reguläre Schwingungen zu erzeugen, die
wir für weitere Arbeiten zum Thema von Kapitel 3 verwenden können.
Allerdings treffen wir auf einige Hinderniss und diskutieren lediglich die



Ergebnisse ohne mit den beiden räumlichen Domänen zu arbeiten und
gemittelte Populationsdichten auszurechnen. Schließlich liegt in Kapitel
6 raum-zeitliches Chaos im Fokus. Wir beobachten Gebiete geordneter
Schwingungen in einem von Chaos dominierten System und versuchen
Ergebnisse von Petrovskii et al. [2010] zu reproduzieren.
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1 Introduction

1.1 Motivation I

It is a well known fact, that animal populations show oscillations in time. But it is still hotly dis-
cussed which factors and mechanisms lead to these oscillations and influence them. In discussion
are external factors as weather [Elton, 1924] or solar activity [Sinclair et al., 1993], just random
influences [Cole, 1951, 1954] or species interactions over two or more trophic levels. A classical
and simple model for the latter one is the predator-prey model by Lotka and Volterra [Lotka,
1934, Volterra, 1931]. Additionally, in some datasets a spatial variation of animal populations
can be identified [Smith, 1983, Ranta et al., 1997b]. Smith [1983] proposed the idea that the
spatial inhomogeneous distribution of populations can be described by diffusion. Whereas other
authors assume a homogeneous animal distribution, disturbed by stochastic or local influences.

Two species for which much data is available are the snowshoe hare (Lepus americanus) and the
Canadian lynx (Lynx canadensis): Fur records of the Hudson Bay Company of the 19th and
20th century [hare and lynx respectively: MacLulich, 1957, Elton and Nicholson, 1942], hare
observations of the Canadian Snowshoe Rabbit Enquiry 1931-1948 (e.g. [Chitty, 1948],[Chitty,
1950] or the journal The Canadian Field-Naturalist from 1934 to 1950 in general), hare countings
with modern equipment [Krebs et al., 1986]. Also secondary data as marks at tree barks is used
to reconstruct time series of hare population [Sinclair et al., 1993]. For the interested reader:
Finerty [1979] discusses possible corruption of the data by human hunting habits.

The published data of the Canadian Snowshoe Rabbit Enquiry 1931-1948 was re-evaluated
and analysed by Smith [1983]. Canadian Snowshoe Rabbit and Canadian Snowshoe Hare are
identical. At this enquiry not the number of hares was counted but it was noted whether the
hare population increased, decreased or stayed equal compared to the year before. For each year
about 300 valid data points distributed over whole Canada are given. This dataset is one of
the most detailed ones which is available. Unfortunately the original data is not available. In
the published data [Chitty, 1948, 1950] the observations are assigned to squares in a grid map
of Canada or to the Canadian provinces. Squares and man-made boundaries are probably not
fitting to the catchment areas of the hare and hence are no good choice for subsuming the data.
Smith [1983] reworked the published data set and looked at the hare oscillation in different areas
of Canada. It became obvious that the temporal oscillations at different spatial positions are
not always in phase. Figure 1.1 shows the phase shifts in years compared to the national mean
oscillation. Figure 1.1 is equal to figure 2 of Smith [1983] but coloured and a legend is added.
The color indicates the size of the phase shift. A whole hare population cycle has a length of
about 9 to 11 years.

A patchy pattern is clear to see in the given figure. It indicates that some spatial motion
exists and a spatial homogeneous model is not enough to explain the population dynamic of
hares. Therefore we will use a continuous spatio-temporal population model introduced by
Murray [1989] and Shigesada and Kawasaki [1997] and discussed amongst others by Petrovskii
and Malchow [1999] and DeRoos et al. [1991]. The model is a system of two partial differential
equations (pde) and describes the interaction, distribution and evolution of a prey and a predator
population. These can be for example the Canadian snowshoe hare and the Canadian lynx.
Simulations with this model in two spatial dimensions show similar patchy shapes. We will only
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Figure 1.1: Map of Canada from Smith [1983] in coloured form. The lines with the numbers
±0.5 till ±2.0 indicate the phase shift in years of the local temporal oscillation
compared to the mean Canadian oscillation of the snowshoe hare population. The
colors indicate also the time shift in years as follows: blue = less than 0.5 years,
light blue = between 0.5 and 1.0 year, green = between 1.0 and 1.5 years, yellow =
between 1.5 and 2.0 years and red = above 2.0 years.

work in one spatial dimension. In the next subsections the model will be further discussed.

The real world data often consists of average values for large areas [e.g.: Chitty, 1948, 1950].
Moreover the areas have different size. The Canadian provinces shown in figure 1.2 are a nice
example for this problem. Because the model is continuous in time and space, exact animal
populations at each position and time point are computed but no average data. Thus real world
data and model results are not directly comparable.

The problem of comparability of model and real world data should be fixed. Therefore we
introduce two domains of different sizes into the model and compute average population densities
for these domains. In other words: We discretise the model. It is better to start on a low level
of complexity. Thus two domains and not three or more are introduced. One next logical step
is, to compare the average model data with real world observation. We do not go this step
but another one. Smith [1983] mentioned a phase shift between temporal oscillations of hare
populations between different areas in Canada. Ranta et al. [1997b] compared hare population
cycles of different provinces in Finland. He observed similar period times for the cycles but phase
shifts depending roughly on the distance between the provinces as well. The continuous model
explains these phase shifts but how does the relation between the discrete average densities look
like? Further, both authors did not regard the size of the domains. Here we start. Or first
questions are: What is the influence of the domain size on the observed average population and
especially on the correlation between the population oscillations of two adjacent domains? Can
we estimate a critical size for an observation area above which the resulting data is averaged too
much and therefore useless? In particular, what are the answers of these questions if noise of
different intensities is added to the model? Another question which is moved to another work:

8



Figure 1.2: Map of Canada with its provinces [WikiCommons et al., 2007]

How strong does the phase shift of the oscillations depend on the distance of two domains?

1.2 The model

Equations 1.1 and 1.2 describe predator and prey populations in time and space. The variable
for time is t and for space x. At first we consider only one spatial dimension. u is the prey and v
the predator population density. The first term on the right-hand side of each equation is spatial
diffusion of both species. The second term in equation 1.1 is logistic growth of the prey. The
third term in equation 1.1 and the second one in equation 1.2 is the food intake of the predator
of Holling-type II by the Michaelis-Menten formula. The constant κ reflects the effectiveness of
the food conversion. The mortality of the predators is given by the third term. The first term
in each equation we call the diffusion term and the second and third one the reaction term.

dU

dt
= Du

d2U

dx2
+

a

u1
· U · (u1 − U)− γ · U

U + h
· V (1.1)

dV

dt
= Dv

d2V

dx2
+ κ · γ · U

U + h
· V − µ · V (1.2)

For more detailed information concerning the different terms and alternative ones see Murray
[1989], Petrovskii and Malchow [1999] or Sherratt and Smith [2008]. The equations are used
for the simulation of different species population (cf. Murray [1989], Malchow et al. [2002],
Medvinsky et al. [2002], Sherratt and Smith [2008]).

To improve the readability of the equations the following short forms are used: df
dt = ft,

d2f
dx2 = fxx
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Introducing dimensionless variables and assuming Du = Dv = D leads to equations 1.3 and 1.4.
Where H = h/u1 (Michaelis-Menten constant), m = µ/a (mortality) and k = κγ/a (effectiveness
of food conversion) are the dimensionless parameters. The proof of these parameters is left for
the reader.

ut = uxx + u (1− u)− u

u+H
v (1.3)

vt = vxx + k
u

u+ h
v −m · v (1.4)

If the diffusion coefficients Du and Dv are unequal, the ration dration between Dv and Du appears
in one of the equations (See equations 1.5 and 1.6 with dratio = Dv

Du
). Here Du 6= Dv is only

shortly discussed in section 3.5.

ut = uxx + u (1− u)− u

u+H
v (1.5)

vt = dratiovxx + k
u

u+ h
v −m · v (1.6)

The system is interesting to analyse. It is a known fact about complex systems that they exhibit
chaotic or non-chaotic behaviour depending on the parameters of the system [e.g.: Lorenz, 1963,
Rössler, 1976]. In the given system (equations 1.3 and 1.4) for a fix set of parameters k, m
and H some initial conditions lead to spatio-temporal chaos and some others not. Without the
diffusion term we would have a system of ordinary differential equations. In this system no chaos
would evolve. The systems of Lorenz [1963] and Rössler [1976] consist of ordinary differential
equations and exhibit temporal chaos. It is important to distinguish between spatio-temporal
chaos and temporal chaos. Different topics concerning the chaotic behaviour of predator-prey
systems are discussed in Pascual and Levin [1999], Petrovskii and Malchow [1999], Durrett and
Levin [2000], Petrovskii and Malchow [2001] and Petrovskii et al. [2003]. Apart from sections
4.1, 5.3 and 5.4 and chapter 6 we work with initial conditions and pde parameters which lead
to non-chaotic system behaviour. We call it regular system behaviour (irregular = chaotic).

1.3 Course of Action

In section 2 the model is presented deeper in detail and technical things as solving the pde
system and implementation issues are discussed. Amongst others the following questions are
answered: Which sets of parameters are used? Which initial conditions are chosen? How are
the two spatial domains defined? In which way the time series of average population densities
are compared? Which numerical solutions are applied to equations 1.3 and 1.4?

Chapter 3 deals with the comparison of the time series of average densities for the given system
with non-chaotic behaviour and one spatial dimension. For this comparison the size and position
of the two domains are varied. Furthermore, the pde parameters are changed exemplary in some
cases.

To make the system more realistic, noise is introduced in chapter 5. It is motivated at first
(section 5.1), then the implementation is described (section 5.2) and observations of the noisy
system are discussed (sections 5.3 and 5.4). The noise leads to unexpected and partly interesting
system behaviour. Unfortunately the chosen kind of noise is not appropriate for our purpose.
Finally a second kind of noise is defined (section 5.5) but because of the lack of time and further
interesting findings no new simulations are performed and analysed.
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In Chapter 4 the system behaviour under variation of some pde parameters is discussed. The
first two sections deal with simple changes of the parameter values and the resulting change in
system behaviour. In the third section the effects of linear in space increasing parameters are
presented. Beneath other things, travelling waves evolve.

Chapter 6 deals with spatio-temporal chaos. When spatio-temporal chaos prevails in the given
system, small sections of regular oscillations appear at some positions in space for a short period
of time. This is topic in section 6.1. In section 6.2 we work on the suppression of chaotic
oscillations through noise on one of the pde parameters. This is a reproduction of some results
of Petrovskii et al. [2010].

Finally in chapter 7 we give an outlook for further work on this topic.
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2 Definition of Model and Domains

2.1 Parameters initial conditions, stationary states and system
behaviour

At first we consider the stationary states of the system of partial differential equations given
by equations 1.3 and 1.4 without the diffusion term. Further we are interested in the stability
of these states. This work helps us later to find a sensible parameter space of H, m and k for
the simulations. The system is called stationary or steady if all temporal derivatives are equal
zero [Tabor, 1989]. Two steady states are obvious (trivial): (u = 0, v = 0) and (u = 1, v = 0).
Additionally, one non-trivial stationary state (u∗, v∗) exists.

u∗ =
pH

1− p
, v∗ = (1− u∗) (H + u∗) , with p = m/k (2.1)

If we perform a linear stability analysis [Tabor, 1989], we get the following results: The state
(u = 0, v = 0) is always a saddle point. (u = 1, v = 0) is stable if H > (1− p) /p and a saddle
point otherwise (H = (1− p) /p we ignore here). The stability analysis of (u∗, v∗) is more com-
plicated. If H < (1− p) / (1 + p) the non-trivial steady state is unstable, if (1− p) / (1 + p) <
H < (1− p) /p it is stable and if (1− p) /p < H it is a saddle point. At H = (1− p) / (1 + p)
is a Hopf bifurcation [Hopf, 1942, Marsden and McCracken, 1976, Morawitz et al., 2002] where
the stability changes from a stable focus to unstable focus with a stable limit cycle. We do not
need k and m explicitly to express the stabilities of the steady states. This is quite convenient.
If we want to distinguish between a stable/unstable node and a stable/unstable focus we need
m or k. At this point we go not into detail. Petrovskii and Malchow [1999] and Petrovskii et al.
[2004] discuss this matter deeper.

The densities u∗ and v∗ should be located in a biological meaningful region (u∗ ≤ 0, v∗ ≤ 0).
Using formulas 2.1 we arrive at 0 < p < 1 and H < (1− p) /p. Hence in our case (u = 1, v = 0)
is always a saddle point and (u∗, v∗) is stable or unstable. The most interesting and realistic
system behaviour takes place if (u∗, v∗) is an unstable focus with a stable limit cycle. Therefore
we chose our parameters later in a way that H < (1− p) / (1 + p) is fulfilled.

The initials and boundary conditions are chosen as in Petrovskii and Malchow [1999].

Initial condition:

u (t = 0, x) = u∗ (2.2)

v (t = 0, x) = v∗ + (ε (x− x0) + δ) (2.3)

The system behaviour - chaotic or regular oscillations - depends on the choice of ε, x0 and δ. For
ε 6= 0 the function v (t = 0, x) is a increasing or decreasing line (see figure 2.1). The parameters
x0 and δ could be replaced by one parameter but working with these two parameters is more
descriptive: δ is the distance of v (t = 0, x) to v∗ at the spatial position x0. Further, if δ = 0, x0
is the spatial position where v (t = 0, x) and v∗ intersect.

If v (t = 0, x) = v∗ for at least one x ∈ ]0, X[ (fig. 2.1 right), chaos evolves in the system. The
chaotic oscillations start at the position of intersection of v (t = 0, x) and v∗ and spread slowly

12



over the whole domain. If v (t = 0, x) 6= v∗ for all x ∈ [0, X] and if ε is not too large (fig. 2.1 left)
then the system behaviour stays regular. If ε is larger than some critical value ε∗, chaos emerges
also in the latter case. In subsection 4.2.2 we generate regular oscillations which seem to be near
the boundary to chaotic ones. For further discussion of these initial conditions and of ε∗ and for
other initial conditions see Petrovskii and Malchow [1999] and Petrovskii and Malchow [2001].

Figure 2.1: Plots of the initial conditions for different values of the parameters ε, x0 and δ. Left:
v (t = 0, x) > v∗, no intersection between v (t = 0, x) and v∗. Right: v (t = 0, x) and
v∗ intersect in xc.

As boundary conditions von Neumann boundary conditions are chosen. They are also called
zero-flux boundary conditions.

Neumann boundary conditions

du (t, x)

dx

∣∣∣∣
x∈{0,X}

= 0 (2.4)

2.2 Numerical Solution of the PDE

In the current program version the pde system (equations 1.3 and 1.4) is solved in two steps. In
the following the variable for time is t and for space is x.

1. Solve the reaction term explicit forward in time with an error of first order (“euler scheme”)
O (∆t). [cf. Hairer et al., 2010]

2. Solve the diffusion term implicit forward in time and centered in space with an error of
first order in time O (∆t) and second order in space O

(
∆x2

)
[cf. Richtmyer and Morton,

1994].

For the solution of the reaction term a more accurate scheme could be used. This is not sensible,
because the implicit solution of the diffusion term has an error of first order in time. The chosen
implicit scheme leads to an tridiagonal matrix which has to be inverted. The inversion of a
tridiagonal matrix can be done by the so-called Thomas Algorithm (cf. Conte and De Boor
[1980] or Schwarz and Koeckler [2009]) which is not as computing time consuming as other
algorithms for the inversion of more general matrices. Therefore it is sensible to use this scheme.

The simplest implementation of the zero-flux initial conditions is to set u (0) = u (−∆s). This
leads to an error of first order in space for the boundary. It is not nice, because for the remaining
space the error is of second order. Therefore it is sensible to find a more accurate discretisation
for the boundary conditions. Here a discretisation suggested in Brauer [2005] with an error of
second order in space is used. We will derive it briefly in the paragraph after the next. The
important point of this discretisation is that the matrix of the implicit scheme stays tridiagonal.
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The left boundary in space is at x = 0 and the right is at x = X. The time starts at 0 and
ends at T . X should be at least 1200. If X is smaller than 1200, the system behaviour changes.
For more information on this see Petrovskii and Malchow [1999]. In some figures S appears
instead of X. S and X are equal. Normally we solved the pde till T = 4000 or T = 10000.
Spatial step ∆x and time step ∆t are both 0.1 if not otherwise mentioned. In section 5.3 the
effects of different ∆x and ∆t are compared. Because an implicit scheme is used, ∆x and ∆t are
independent of each other [Richtmyer and Morton, 1994]. The steps for the user output (∆xOut

and ∆tOut) are 1 by default but can be changed.

We discretise space and time and get a grid with P steps in spatial and Q steps in temporal
direction. The spatial steps are numbered from 0 to P − 1. The index is called p. Whereas
p · ∆x = x. The temporal steps are numbered accordingly and their indices are called q with
q ·∆t = t. Further, u (x, t) is equal to u (p ·∆x, q ·∆t) and uqp. We apply a implicit discretisation
schema on the diffusion equation ∂tu = ∂xxu and get equation 2.5.

uqp = −c · uq+1
p−1 + (1 + 2 · c)uq+1

p − c · uq+1
p+1 + o

(
∆x2

)
+ o (∆t) (2.5)

with c = D
∆t

∆x2

At the boundaries we get the following discretisations.

uq0 = −c · uq+1
−1 + (1 + 2 · c)uq+1

0 − c · u1p+1 + o
(
∆x2

)
+ o (∆t) (2.6)

uqP−1 = −c · uq+1
P−2 + (1 + 2 · c)uq+1

P−1 − c · u
q+1
P + o

(
∆x2

)
+ o (∆t) (2.7)

uq+1
−1 and uq+1

P are not explicit given and have to be replaced by other expressions. We will do

this exemplary for uq+1
−1 . The replacement of uq+1

P works analogically. For deriving an expression

for uq+1
−1 we need the boundary condition of equation 2.4. To simplify the reading we leave out

the index for the time step if it is not necessary.

∂u (x, t)

∂x

∣∣∣∣
x=0

= ∂xu (x = 0, t) = 0 (2.8)

⇒ ∂xu0 = 0 and ∂xu−1 = 0 (2.9)

If we express ∂xu0 by a first order Taylor expansion and transform the resulting equation, we
get an expression for ∂xu0.

∂xu0 =
u0 − u−1

∆x
+ o (∆x) (2.10)

Using the boundary condition of formula 2.9 on the Taylor expension 2.10 leads to equation
2.11.

u0 = u−1 + o (∆x) (2.11)

Inserting 2.11 into equation 2.6 we get equation 2.12.
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uq0 = (1 + c)uq+1
0 − c · u1p+1 + o (∆x) + o (∆t) (2.12)

Equation 2.12 has an error of first order in space. Whereas the spatial error in equations 2.5
and 2.6 is of second order. Our aim is to improve the order from first order to second order.
Therefore we express u0 and u1 by Taylor Series. u0 is expended towards u−1 with as step size
of ∆x and u1 is expended towards u−1 with double step size (2 ·∆x).

u0 = u−1 + ∆x · ∂xu−1 +
1

2
∆x2∂xxu−1 + o

(
∆x3

)
(2.13)

u1 = u−1 + 2∆x · ∂xu−1 +
1

2
(2∆x)2 ∂xxu−1 + o

(
∆x3

)
(2.14)

If we subtract four times equation 2.13 from equation 2.14, we get equation 2.16.

u1 − 4u0 = −3u−1 − 2∆x · ∂xu−1 + o
(
∆x3

)
(2.15)

⇔ ∂xu−1 =
−3u−1 + 4u0 − u1

2∆x
+ o

(
∆x3

)
(2.16)

With formula 2.9 in equation 2.16 and a bit transforming we arrive at equation 2.17. Inserting
this into the discretisation at x = p = 0 (equation 2.6) leads equation 2.18. The last expression
has a second order error in space as we wished. We use this one for our computations.

u−1 =
4

3
u0 −

1

3
u1 + o

(
∆x2

)
(2.17)

uq0 =

(
1 +

2

3
c

)
uq+1
0 − 2

3
c · u1p+1 + o

(
∆x2

)
+ o (∆t) (2.18)

2.3 Choice of Parameters and Initial Conditions

In Petrovskii and Malchow [1999] two different sets of parameters are applied to the pde system.
Set A from them is adopted here. For this set the non-trivial stationary state is unstable but it
has a stable limit cycle. Set D is adopted from Petrovskii et al. [2010]. The parameter sets C
and E are not adopted. Sets C, D and E lead to the same stability for the non-trivial stationary
state as set A but the size and shape of the limit cycle differ. The second set is named C and
not B to avoid confusion with Petrovskii and Malchow [1999]. The parameters sets A and C are
used generally in the whole work while D is used exclusively in section 6.2 and E only in section
4.3.

A: k = 2.0, m = 0.6, H = 0.4

C: k = 1.9, m = 0.8, H = 0.4

D: k = 2.0, m = 0.7, H = 0.3

E: k = 1.9, m = 0.75, H = 0.4

The parameters of the initial conditions of v are also chosen analogical to Petrovskii and Malchow
[1999] and Petrovskii et al. [2010]. Here we assign small letters to them. The sets a and b are
from the first and d from the second source.
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a (regular system behaviour): ε = 0.0004, x0 = 0, δ = 0.01

b (chaotic system behaviour): ε = 0.0004, x0 = 200, δ = 0

d (chaotic system behaviour): ε = 0.0004, x0 = 600, δ = 0

If below the regular case is mentioned it denotes a system with regular behaviour. Accordingly,
the chaotic case means one with chaotic behaviour. Figure 2.2 shows some plots which illustrate
the system behaviour. The plots on the left hand side show regular system behaviour. Bottom
left a u-v-phase plane with limit cycles of the prey density for two different sets of pde parameters
(blue = set A, red = set C) is plotted. The plot top left shows the spatio temporal oscillations of
the prey and predator population densities. Contrary, on the right-hand side one can see chaotic
oscillations in the u-v-phase plane (bottom right) and the spatial distribution of the populations
(top right). For the plots at the top the time t = 2000 is chosen and for the plots at the bottom
the spatial position x = 600.

Figure 2.2: Plots of solutions of equations 1.3 and 1.4. The plots on the left hand side show
regular (initial conditions a) and on the right-hand side chaotic behaviour (initial
conditions b). The plot bottom left shows solutions of the pde system for parameter
sets A and C. For all other plotted solutions only the parameter set A is used. The
plots at the top show the population densities of prey and predator depending on
the space x at the time t = 2000. On the left hand side one can see nice regular
oscillations with a constant amplitude. On the right hand side the oscillation is
chaotic and the amplitudes vary strongly. Nevertheless they stay within a certain
interval. The plots at the bottom show the u-v-phase plane for the temporal interval
[3000, 5000] and at the spatial position x = 600. On the left hand side one can clearly
see a limit cycle whereas on the right hand side irregular oscillation is present.

2.4 Definition of the Domains

In this section we introduce the two domains and define parameters which describe these domains
completely. Table 2.2 at the end of this chapter contains all parameters with a short description
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as overview.

At first we choose two intervals of the length L1 and L2 and place them neighbouring to each
other somewhere in the space. The space is defined by the interval [0, X]. The two intervals are
our domains and we call them A1 and A2. Precisely we have up to four intervals: “left of A1”,
A1, A2 and “right of A2”. The first and the latter interval exist sometimes and sometimes not.
We ignore them. The sum of L1 and L2 we call L. Figure 2.3a illustrates this.

aL
0 SL1 L2

L

bL
0 S

Position

Figure 2.3: Domains A1 and A2 in space. a) Length of domain A1 is L1 and length of domain
A2 ist L2. L ist the sum of L1 and L2. b) Position of A1 and A2. The center of
A1 ∪A2 is the point which is positioned.

It seemed sensible to me to choose the cumulated size of both domains L in relation to the size
of the whole space X. Thus we define a parameter Lfraction. In the figures 2.3a, 2.3b and 2.4
the value of Lfraction is 0.7.

Lfraction =
L

X
Lfraction ∈ ]0, 1]

0 SL1 = 0.4´S L2 = 0.3´S

L = 0.7´S

Figure 2.4: Lfraction = L
X = 0.7 and Lratio = L1

L2
= 4

3 = 1.3̄

Further we have to define the position of the domains in the space. The center of A1 ∪A2 is the
point we place somewhere (see fig 2.3b). The parameter which contains this information we call
Lposition. It seemed sensible to me to use a position relative to size of the space S. Therefore
Lposition is defined as follows.

• Lposition = 0: the center of the domains is in the center of the space (xPosition = 0.5 ·X);

• Lposition = 0.5: the center of the domains is on the left boundary of the space (xPosition =
0). Half of L is outside the space. Therefore this position is not sensible to use.

• Lposition = −0.5: the center of the domains is on the right boundary of the space (xPosition =
X). Half of L is outside the space. Therefore this position is not sensible to use.

• Lposition ∈ [− (0.5− Lfraction/2) , 0.5− Lfraction/2]

For illustration and examples see figure 2.5.

The size of L1 and L2 is defined by their ratio Lratio and their cumulated size L as follows.

L1

L2
= Lratio

L1 =
Lratio

1 + Lratio
L =

Lratio · Lfraction

1 + Lratio
X (2.19)

L2 =
1

1 + Lratio
L =

Lfraction

1 + Lratio
X (2.20)
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aL
0 S

Position = 0.

bL
0 S

Position = -0.25

cL
0 S

Position = 0.25

dL
0 S

Position = 0.25

eL
0 S

Position = 0.4

fL
0 S

Position = 0.5

Figure 2.5: Shown are different positions of the domains with given Lposition. Figure f) is for
demonstration of Lposition = 0.5 only. The domains can not be defined this way in
the simulation because A2 is not in [0, X].

In figure 2.4 Lratio is 4/3. We assume, that L1 and L2 are interchangeable. Thus Lratio needs
only to be 1 and greater 1 or 1 and smaller 1 but not both. Arbitrary we choose the ratio to
be greater or equal 1. The assumption is shortly discussed in section 3.1 (see near table 3.2).

Figure 2.6: The prey (u, blue line) and predator (v, green line) densities are plotted against the
space s for a given time t. The chosen set of pde parameters, initial conditions and
t are not of interest. The boundaries of the two domains A1 and A2 are marked
by vertical lines. The average densities 〈u〉1, 〈u〉2, 〈v〉1 and 〈v〉2 are represented by
horizontal coloured and dashed lines.

For both domains and at each time step the average densities of u (Prey) and v (Predator) are
computed - call them 〈u〉1, 〈u〉2, 〈v〉1 and 〈v〉2 (see fig 2.6). After each simulation 〈u〉1 and 〈u〉2
and respectively 〈v〉1 and 〈v〉2 are compared. For example correlation coefficients are computed
or a phase plan of 〈u〉1 and 〈u〉2 is visualised. More to the comparison in the next section.

2.5 Comparison of the Average Densities

Figure 2.7 shows four plots with 〈u〉1 and 〈u〉2. The nearer the points are to an arbitrary line
(e.g. the black line) the higher is the linear correlation between 〈u〉1 and 〈u〉2. Therefore the
linear correlation in the plot bottom right is considerably higher than in the bottom left and top
right one. For comparison the correlation coefficients are shown in table 2.1. The plot bottom
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Figure 2.7: Four example plots: The plot top right shows 〈u〉1-〈u〉2-phase plane for the chaotic
regime and the other plots for the regular one. The thick black line in each plot
is a line through the origin with a gradient of 1. The plot bottom right has a
strong linear correlation and thus the correlation coefficient in table 2.1 is near 1.
The correlation coefficient of the plot bottom left is small because of a low linear
correlation. Compared to the plot of the chaotic regime top right the plot bottom
left has at least some kind of correlation. Top right looks like random data. The
plot top left shows a medium linear correlation. One can imagine a nearly vertical
line near which the data is gathered. Therefore the correlation coefficient of this plot
has a medium size.

〈u〉c left right

top 0.4372 -0,0030
bottom 0.1103 0.9255

Table 2.1: Correlation coefficients 〈u〉c corresponding to the plots in figure 2.7

left shows no linear correlation but the points are not distributed randomly as in the plot top
right. The plot top left is similar to the one below. Thus, there are three cases: 〈u〉1 and 〈u〉2
are linear correlated (bottom right and partly top left), they are not linear but in another way
correlated (bottom left and partly top left), they are not correlated (top right).

To be able to compare a larger number of different time series of 〈u〉1 and 〈u〉2 the Pearson’s
correlation coefficient of 〈u〉1 and 〈u〉2 is used. It measures the size of the linear correlation
between 〈u〉1 and 〈u〉2. We call it 〈u〉c. With the following equation the coefficient is computed:

〈u〉c =

∑n
i=1

((
〈u〉1,i − 〈u〉1

)(
〈u〉2,i − 〈u〉2

))
√∑n

i=1

((
〈u〉1,i − 〈u〉1

)2)√∑n
i=1

((
〈u〉2,i − 〈u〉2

)2) (2.21)

〈u〉1,i and 〈u〉2,i are elements of the two discrete time series of average densities 〈u〉1 and 〈u〉2
with i ∈ {1, 2, . . . , n} giving the number of the element. i = 1 correspondents to time t = 0 and
i = n to the final time T . 〈u〉1 is the average value of the time series of 〈u〉1 and respectively 〈u〉2
for the other time series. The correlation coefficients for the density v are computed analogically.
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If the correlation coefficient is near 1 or −1 then the data is linear correlated. This means that
the plotted data nearly has the shape of a line. If the correlation coefficient is near 0 then the
data is not linear correlated. In this case either the data points are distributed randomly in
space or they form a nonlinear shape.

The Pearson’s correlation coefficient is no ideal measure of the correlation as a view on figure 2.7
clarifies: The correlation coefficients of the data shown top right and bottom left are similar. But
for the plot bottom left a nonlinear correlation is obvious whilst in the first one no correlation is
apparent. This coefficient is simple to compute and compare and therefore it is sensible to use
it as one but not the only one measure.

Table 2.2 shows which domain parameters are varied and discussed in chapter 3. Further the
expected observations are listed.

parameter
(where
discussed)

meaning of
parameters

expectation

Lfraction

(Chp 3.1)
size of L1 + L2

in relation to S
If Lfraction decreases the linear correlation increases and
therefore the absolute value of 〈u〉c increases.
If 〈u〉1 and 〈u〉2 are plotted for each Lfraction a correlation
(but not linear) is apparent.

LRatio

(Chp 3.1)
Relation be-
tween L1 and L2;(

= L1
L2

) If LRatio is near 1, no influence is expected.
If LRatio increases or decreases with respect to 1, the
linear correlation should decrease.

LPosition

(Chp 3.2)
Location of the
center of both
domains in space

No influence of LPosition should be observed as far as
temporal interval for comparing the average densities is
sufficient large.
If the correlation is influenced:
- prove whether it is caused by then initial conditions OR
- prove whether it depends on the choice of the temporal
interval in which the average densities are compared

LZero

( - )
Distance between
A1 and A2

Not discussed here. LZero is set to 0.

size and location of tem-
poral interval for compar-
ing the average densities and
computing correlation coef-
ficients. (Chap 3.2)

If the interval is sufficient large, then the location should
have no influence.
Open question: How large is sufficient large?

Table 2.2: Domain parameters which are varied and the expected observations.
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3 Correlation of average Densities

If not mentioned otherwise, the simulations discussed below are performed with the parameter
set A of pde parameters, the initial conditions a and Du/Dv = 1 and the domain parameters
are set to LRatio = L1/L2 = 1 and Lposition = 0 (center).

3.1 Size of the Domains

One can expect, that the linear correlation between 〈u〉1 and 〈u〉2 increases when L decreases.
This will be discussed at first. In figure 3.1 three plots with 〈u〉1 on the x- and 〈u〉2 on the
y-axes for different sizes of L are shown.

Figure 3.1: Plots of the 〈u〉1-〈u〉2-phase plane for different values of L. Size of L decreasing
from L = 0.5S (left) and L = 0.1S (center) to L = 0.01S (right). In each plot
a correlation between 〈u〉1 and 〈u〉2 is observable but with decreasing L the linear
correlation increases.

L
〈u〉c (LPosition) 〈u〉c V ar (〈u〉c)-0.3 -0.2 -0.1 0 0.1 0.2 0.3

1200 -0.2335 -0.2335
900 0.0193 -0.2037 -0.3727 -0.1857 0.0387
600 -0.2826 -0.4302 -0.4302 -0.2769 -0.0442 -0.2928 0.0250
300 0.3076 0.1818 0.1013 0.0865 0.1692 0.3654 0.6020 0.2591 0.0333
120 0.8078 0.7763 0.7554 0.7467 0.7567 0.7997 0.8891 0.7902 0.0024
60 0.9445 0.9353 0.9289 0.9255 0.9267 0.9366 0.9675 0.9379 2,15E-04
12 0.9976 0.9972 0.9970 0.9968 0.9968 0.9970 0.9986 0.9973 4,26E-07
1.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 4.12E-11

Table 3.1: For eight sizes of L the value of 〈u〉c is computed at different positions of the domains
(numbers {−0.3,−0.2, . . . , 0.3} in the second line of the heading). For a better com-
parison of the correlation coefficients the mean value 〈u〉c and variance V ar (〈u〉c)
of the 〈u〉c’s is given in two columns on the right. The gray coloured correlation
coefficients are those of the plots in figure 3.1. The influence of the position on the
correlation coefficients is discussed in section 3.2
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Figure 3.1 shows a clear dependency between 〈u〉1 and 〈u〉2 similar to a limit cycle. Dependency
does not mean linear correlation but any shape which does not look random like the plot top right
in figure 2.7. For decreasing L the cycles converges to the black line which is a line through
the origin and with a gradient of 1. Thus, the linear correlation increases. The correlation
coefficients in table 3.1 show the same. The gray coloured ones in the table are those belonging
to the plots in figure 3.1.

Table 3.1 shows correlation coefficients for 〈u〉1 and 〈u〉2. The values in the table are attained
by the same pde solution as above. In this case the time series 〈u〉1 and 〈u〉2 are computed
for different positions of A1 and A2. Further the coefficients are computed for the temporal
interval [1000, 10000]. It is sensible not to start with t = 0 because of the influence of the initial
conditions. The influence of the initial conditions is briefly discussed in the summary to this
chapter in section 3.6. For a better overview, the average value and variance of the different
correlation coefficients for each domain size are computed.

The average correlation coefficients in table 3.1 increase for decreasing L with L ≤ 300. The
variances of the correlation coefficients show, that for L = 600 and L = 300 the correlation
coefficients at the different positions vary more, than for smaller L. If you look at the red lines
of the left plot of figure 3.1 the reason becomes clear: A slightly linear correlation (negative) is
present. For high L there is no linear correlation but by coincidence a alignment of 〈u〉1 and
〈u〉2 can form which looks as if a linear correlation was existent. This is the case for the red line.
Therefore we can expect different correlation coefficients at different positions for high L. If L
is small, the variance is also small and thus the correlation coefficients are quite similar. With
a look at the plot on right-hand side of figure 3.1 this can be expected. Hence we can assume
reasonably that small L lead to a high linear correlation between 〈u〉1 and 〈u〉2 and high L to
nearly random correlation coefficients.

Figure 3.2: Plots of the 〈u〉1-〈u〉2-phase plane for each two different values of L and LRatio =
L1/L2. LPosition is −0.05 in the top row and 0.2 in the bottom row. The corre-
sponding correlation coefficients 〈u〉c are given in table 3.3

22



Lratio L 〈u〉c Lratio L 〈u〉c Lratio L 〈u〉c
0.5

1,2
1.0000 0.5

120
0.7996 0.5

900
-0.0462

2 1.0000 2 0.7978 2 -0.1304
0.5

12
0.9974 0.5

300
0.3024 0.5

1200
-0.2402

2 0.9974 2 0.2835 2 -0.1119
0.5

60
0.9405 0.5

600
-0.1652

2 0.9403 2 -0.2383

Table 3.2: As in table 3.1 the mean value 〈u〉c of the correlation coefficients of the time series
at different LPosition’s for given LRatio and L are shown. The single values at the
different positions are not shown.

As next different choices of LRatio are considered. In section 2.4 it was assumed that LRatio = r
with r ∈ [1,∞[ and LRatio = r−1 lead to nearly equal time series of 〈u〉i and correlations between

them. Table 3.2 and figure 3.2 show some data to discuss this assumption. If L ≤ 300, the 〈u〉c’s
for LRatio = 0.5 and LRatio = 2 in table 3.2 differ only in maximal ±0.02. If L is larger, the
deviation is much larger. Hence we conclude, that the effect of LRatio = r and LRatio = r−1 on
the correlation of the average populations densities is identical for L ≤ 300. Figure 3.2 can be
interpreted in the same way. The top row shows plots for L = 900 and bottom for L = 300.
The columns contain plots for LRatio = 0.5 (left) and LRatio = 2 (right). If plots within each
row are compared, the similarity in the bottom row is high except for the blue trajectory. In the
first row, no similarity is present. This confirms the observations made in table 3.2. Therefore
it can be assumed, that L1 and L2 are interchangeable without problems for small and medium
L (L ≤ 300).

LRatio 0.5 2 1 9 99
L

900 -0.0501 -0.1519 -0.1519 -0.0382 0.4372
300 0.4246 0.3346 0.0865 0.1103 0.1772
60 0.9255 0.9260 0.9270

Table 3.3: Correlation coefficients 〈u〉c corresponding to the plots in figures 3.2 and 3.3

Now we consider the effect of different LRatio’s on the correlation of 〈u〉1 and 〈u〉2. Figure 3.3
shows some plots for varying L and LRatio. LPosition is 0 for all plots. If L is small (bottom
row of fig 3.3), LRatio has no noticeable influence. For medium L as shown in the center row an
effect of LRatio is existent but not large. With increasing time the effect declines. Finally for
large L the influence of LRatio is clear as visible in the top row of plots: The three cycles align
in a similar shape and direction. This leads to a larger correlation coefficient for larger LRatio’s.
The values in the first row of Table 3.3 confirm it. Consideration of time series for other values
of L and LPosition lead to the same observations. Hence it can be concluded, that LRatio has no
significant influence on the correlation between 〈u〉1 and 〈u〉2 for small and partly medium L.

3.2 Different Locations of the Domains

If we hold all parameters and the sizes of L1 and L2 constant and only vary the position of L then
the correlation between 〈u〉1 and 〈u〉2 should stay constant in an interval of natural variation.
Depending on the size of L this variation deviates. A first processing of the data gained by the
solved PDE showed a strange result: When moving A1 and A2 from left to right in space the
correlation coefficients grew. Therefore we go further into detail than the first sentence lets the
reader expect.
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Figure 3.3: Plots of the 〈u〉1-〈u〉2-phase plane for different values of L and LRatio = L1/L2. In
each column LRatio and in each row L is constant. LPosition = 0 for all plots. The
corresponding correlation coefficients 〈u〉c are given in table 3.3

Table 3.4 (which cotains actually four tables, but the colouring is simpler done in Excel) shows
correlation coefficients for two different values L, seven positions of L and two different sets of
initial conditions. Normal initial conditions means set a. The term inverted initial conditions is
explained further below when the bottom row is actually discussed. At first only the tables in
the top row are discussed. In figure 3.4 the correlation coefficients 〈u〉1 and 〈u〉2 are plotted for
the same L as in the tables but less positions.

Column “1000 < t < 3000” in both tables of the top row of table 3.4 is important to note.
Depending on the position of L (e.g. −0.3 and 0.2) the correlation coefficients differ strongly.
It means, that for a considerable large time interval of 2000 time units the correlation between
〈u〉1 and 〈u〉2 is still depending on the position of the domains or respectively on the point of
view of an observer. Column “5000 < t < 9000” in the top row tables of table 3.4 and the plots
of figure 3.4 show the same. The blue lines show the different correlations most clearest: Strong
linear correlation in the plots on the left hand side (partly covered by the green lines) and a
shape similar to a rectangle with a low linear correlation one the right. This observation is valid
for different L. Again smaller L leads to a larger linear correlation.

In the bottom row of table 3.4 data of simulations with the same parameters as in the top row
is shown but the initial conditions are inverted. Inverted initial conditions in this case means,
that the initial densities from the right side of the space are now on the left and the other
way around. Or mathematically spoken: vinv0 (0) = v0 (X) and general vinv0 (x) = v0 (X − x),
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Table 3.4: Four tables each with correlation coefficients (coloured columns in the tables) com-
puted at different positions in space and over different temporal intervals. The tem-
poral intervals are [1000, 10000], [1000, 5000], [1000, 3000] and [5000, 9000]. For each
table different initial conditions for solving the pde and different domain sizes L are
chosen: tables left hand side: L = 120 = 0.1S; right: L = 60 = 0.05S; tables at the
top: normal initial conditions; bottom: inverted initial conditions. LRatio = 1 for all
tables.

Figure 3.4: Plots of the 〈u〉1-〈u〉2-phase plane for different values of LPosition and L. In each
row L and in each column LPosition is constant. LRatio = 1 for all plots. The
corresponding correlation coefficients 〈u〉c are given in table 3.5
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LPosition -0,35 -0,05 0,25
L

120 0,8273 0,7493 0,8464
60 0,9502 0,9268 0,9542

Table 3.5: Correlation coefficients 〈u〉c corresponding to the plots in figure 3.4.

whereas v0 (x) are the initial conditions of v at location x under normal initial conditions and
vinv0 (x) under inverted initial one. As can be seen clearly, the correlation coefficients are mirror
inverted with respect to the positions of the domains. Therefore the spatial variation of the
correlation coefficients depends on the initial conditions.

All in all it has been shown, that the correlation coefficients of 〈u〉1 and 〈u〉2 should be computed
for a reasonable large temporal interval of at least 5000 time units. Furthermore the position
dependency of the correlation coefficient is caused by the initial conditions and is not a system
inherent property. Moreover it is shown, that the initial conditions effect the correlation of the
average densities still after several thousand time units.

3.3 Comparison of average Predator- and Prey Densities

Till now only the population density u was considered and v was ignored. If analysis of
(〈u〉1 , 〈u〉2) and (〈v〉1 , 〈v〉2) lead to the same results then the analysis of one is enough. Table
3.6 shows some correlation coefficients in comparison.

Lratio LPosition 〈u〉c 〈v〉c L

1 0.00 -0.2335 -0.2280 1200
1 -0.05 -0.0831 -0.0968 900
1 0.10 -0.2769 -0.2852 600
3 -0.15 -0.1226 -0.1238 600
1 0.10 0.1692 0.1315 300
1 -0.25 0.7907 0.7492 120
1 0.00 0.7467 0.6990 120
3 -0.30 0.9452 0.9282 60
1 0.10 0.9968 0.9956 12

Table 3.6: Comparison of 〈u〉c and 〈v〉c for parameter set A and initials conditions a. In each
row |〈u〉c − 〈v〉c| ≤ 0.05.

As it is clear to see in table 3.6, 〈u〉c and 〈v〉c differ in less than ±0.05 from each other. The
plots in figure 3.5 show the 〈u〉1-〈u〉2- and 〈v〉1-〈v〉2-phase planes for three different values of L.
The trajectories of 〈u〉 and 〈v〉 are the same except of a scaling factor. Hence the correlation for
u is equal to the one of v. Therefore it is reasonable to consider only u or v.

3.4 Parameter Set C

The results for parameter set C are only shortly discussed, because qualitatively they do not
differ from those for parameter set A. Have a look on table 3.7. If L increases (tables from left to
right) the correlation coefficient 〈u〉c for set C decreases. For large L (right table) the variability
of the 〈u〉c at different positions is larger than for small L (left table). A change of LRatio (not
shown) has the same effect as obtained for parameter set A. Therefore the use of parameter set
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Figure 3.5: Plots of the 〈u〉1-〈u〉2- respectively 〈v〉1-〈v〉2-phase plane for different values of L.
LRatio = 1 and LPosition = 0 for all plots. The shape of the blue and green trajectories
in each plot is the same. It differs only in size.

C leads qualitatively to the same results as the use of set A. 〈u〉c for set C is larger than for
set A. This means that the linear correlation of the mean densities in both domains is larger
for set C. Hence the results obtained using the parameter sets A and C are quantitaviely not
comparable.

L LPos
〈u〉c L LPos

〈u〉c L LPos
〈u〉c

A C A C A C
60 -0.3 0.9445 0.9978 120 -0.3 0.8078 0.9911 600 -0.2 -0.2826 0.7306
60 -0.2 0.9353 0.9973 120 -0.2 0.7763 0.9891 600 -0.1 -0.4302 0.6515
60 -0.1 0.9289 0.9965 120 -0.1 0.7554 0.9859 600 0 -0.4302 0.5183
60 0 0.9255 0.9951 120 0 0.7467 0.9804 600 0.1 -0.2769 0.2715
60 0.1 0.9267 0.9926 120 0.1 0.7567 0.9703 600 0.2 -0.0442 -0.1950
60 0.2 0.9366 0.9869 120 0.2 0.7997 0.9478
60 0.3 0.9675 0.9695 120 0.3 0.8891 0.8774

Table 3.7: Correlation coefficients of simulations with the parameter sets A (column 3) and C
(column 4) for different values of L (column 1) and LPositions (column 2)

3.5 Different Diffusion Coefficients

Du Dv
〈u〉c

L = 12 L = 60 L = 120

1 4 0.9144 0.4654 0.3770
1 1 0.9974 0.9403 0.7976
4 1 0.8999 0.3167 0.1870

Table 3.8: As in table 3.1 the mean value 〈u〉c of the correlation coefficients of the time series
at different LPosition’s for given Du/Dv and L are shown. The single values at the
different positions are not shown.

If both diffusion coefficients Du and Dv are scaled with the same factor q the effect is equal to
scaling the space with

√
q−1. In other words: If we scale the diffusion coefficients with q and

the space with
√
q nothing changes. The same should count for L: If the diffusion coefficients

are increased and the absolute value of L not, L increases with respect to the velocity of spatial
transport. Hence the linear correlation decreases. But what happens for changing ratio between
the diffusion coefficients Du/Dv? One could expect, the system is scaled a bit and thus the
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correlation coefficient for a special L decreases. The expectation can be confirmed by the data
in table 3.8.

Table 3.8 shows: If one of the diffusion coefficients raises, the linear correlation decreases for
unchanged L. Regarding the first sentences of section 3.5 the correlation coefficient of Du/Dv =
1/4 or Du/Dv = 4 and L = 60 should be equal or smaller than the one of Du/Dv = 1 and
L = 120. If the 〈u〉c’s in table 3.8 are regarded it becomes obvious that the effect of scaling Du

with 4 is larger than scaling L with
√

4 = 2. We will not go deeper into this but remember it
for later work. Another interesting observation to note is, that 〈u〉c is smaller for Du/Dv = 4
than for Du/Dv = 0.25. Also here, we will not go further into detail.

3.6 Summary first Analysis and Outlook

Before we enlarge our model and make it more complicated, we will sum up the most important
points of chapter 3. Figure 3.6 shows two 3D plots with LRatio and LPosition on the x-axis
respectively and with each the correlation coefficient 〈u〉c on the z- and the size of both domains
L on the y-axis. The most observations in the left plot are already mentioned in section 3.1. For
small L the linear correlation of the mean densities is high and 〈u〉c is near 1. When L increases,
〈u〉c decreases to 0 and further below and it reaches a minimum at about L = 600. The
correlation coefficient is negative in the minimum. Therefore a linear correlation with negative
gradient is present. But it is quite small because 〈u〉c > −0.5 and it’s value depends on LPosition

as the right plot shows. For increasing L above L = 600 the correlation coefficient increases
again to values around 0. LRatio has nearly no influence if L is small. But for increasing L its
influence growth. If L is large and LRatio is increased (starting with LRatio = 1), 〈u〉c increases
at first strong and then the gradient declines. From LRatio = 20 to 100 only a small increase
in 〈u〉c takes place and its value is around 0.5. This observation is new and is not mentioned
above in section 3.1 or anywhere else. Why 〈u〉c converges to about 0.5 is not completely
intuitively clear. One possible explanation is the following: If we have two large domains both
influence each other in a small region around their contact point. Outside of this region the
oscillations in both domains are independent of each other. Therefore the average densities are
quite uncorrelated. If we have one large and one small domain, the large domain influences the
other one strongly. Thus the oscillations in the small domain adapt slightly to those in the large
one and the oscillations in both domains show a medium or large correlation.

Figure 3.6: Two 3D-plots with correlation coefficient 〈u〉c on the z-axis, the size of both do-
mains L on the y-axis and LRatio (left plot) and LPosition (right plot) on the x-axis
respectively.

Have a look on the right plot of figure 3.6. If L is small, LPosition has no influence on the
correlation coefficients. Contrary, if L is medium or large - not too large, because then we have
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too less possible positions - 〈u〉c depends strongly on LPosition. This was already mentioned and
discussed in section 3.2.

Furthermore, in section 3.3 we consider whether the predator and the prey density have to be
regarded or whether one of the densities is sufficient. We obtained the result, that working with
one density is sufficient. In section 3.4 the results obtained by two different parameter sets are
compared. Changing the pde parameters leads qualitatively to the same results. Quantitatively
the correlations coefficients 〈u〉c differ. Finally in section 3.5 the influence of the ration Du/Dv

is discussed briefly. The correlation coefficients do not change as expected. Therefore in further
works the influence of the diffusion coefficients Du and Dv should be regarded more in detail.

The correlation coefficients which are discussed in this chapter (chapter 3) are computed over
the temporal intervals [1000, 5000] or [1000, 10000]. In section 3.1 we argue, that we start
the computation at t = 1000 to avoid the influence of the initial conditions. However, as
we see in table 3.4 of section 3.2 inverted initial conditions lead to differences in the results
beyond t = 5000. As mentioned in section 2.3 varying the initial conditions can lead to chaotic
oscillaions. Later in subsection 4.2.2 a third kind of oscillations induced by another choice of
the initial conditions is observed. Therefore another big topic for further works is the influence
of the initial conditions on the average populations densities of two or more spatial domains, on
the correlation coefficients between them and on the system behaviour in general.

The next planed step is to add noise to the model to get a more realistic system behaviour.
In chapter 5 one kind of noise is introduced and discussed. This noise should have been added
to our model. Unfortunately it does not lead to a more realistic system behaviour. Defining
a new kind of noise, adding it to our model and analysing the results is out of the temporal
scope of this work. Therefore we discuss some other interesting findings of our simulations in
the chapters 4 and 6. In further works a new kind of noise should be defined and applied to our
model. section 5.5 lines out another way of defining noise.
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4 Variation of Parameters

Figure 4.1: Different kinds of plots with different visualised data. Different columns: One the
left hand side data of simulations with parameter set A and initial conditions a is
plotted for the temporal interval [500, 600] . The system behaviour is regular. In
the center and on the right hand side data of simulations with parameter set C and
initial conditions b is plotted for two different temporal intervals. For the plots in the
center the temporal interval is [150, 250]. At x = 200 chaotic oscillations emerge.
On the right hand side the temporal interval [2500, 2600] is used. In the plotted
period of time, chaos prevails. Different rows: The top row shows 3d plots of the
given data. On the x-axis the space x, on the y-axis the time t and on the z-axis the
prey’s populations density u is plotted. The color of the graph corresponds to the
value on the z-axis. The bottom row shows 2d color plots of the same data as in the
top row. X- and y-axes are the same as in the plots of the top row. The color at
each point in the plot depends on the value of the populations density at the point.
Dark blue stands for a small density and dark red for a large one. In our work the
absolute value of the populations density is not regarded. Therefore we forgo to plot
an extra color legend to each 2d color plot.

In this section and the following two, results of simulations with different variations of parameter
sets and initial conditions are presented, discussed and compared with each other. For the
visualisation of the results two different kinds of plots are used. Those are to see in figure 4.1.
In the top row of this figure 3d plots are arranged and in the bottom row 2d color plots. In both
kinds of plots the x-axis shows the space x and the y-axis the time t. The population density
of the prey or predator (In figure 4.1 it is the prey.) is plotted at the z-axis of the 3d plot and
is indicated by the color of the graph. At the 2d color plots only the color of a point in the
spatio-temporal plane of the plot indicates relatively the populations density. The color dark
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red stands for the largest values of the density within the plotted spatio-temporal interval and
dark blue for the smallest. The absolute values of the densities do not interest us. Therefore
the relative illustration of the data is sufficient and we forgo to plot a legend with the absolute
values correspoding to the color.

Till now we worked with regular behaving systems only. The two plots in the left column of
figure 4.1 show a section of such a system for a small spatio-temporal interval. Parameter set
A and initial conditions a are used. In this and the following chapter the development of chaos
and chaotic oscillations are considered. Therefore we shortly present how the normal onset of
chaos and the chaotic oscillations look like. With normal we mean the chaos induced by the
initial conditions b or more general those with v (t = 0, x) = v∗ for at least one x ∈ ]0, X[. As
we discuss later, further mechanisms exist which lead to chaos. The plots in the center and
right hand side columns of figure 4.1 show simulation results for parameter set A and initial
conditions b for two different periods of time. The onset of chaos is plotted in the center column
for t ∈ [150, 250]. The chaotic oscillations start at x = 200 and expand in both directions.
The plots on the right hand side show chaotic oscillations over the whole spatial domain for
t ∈ [2500, 2600].

4.1 Chaos through parameter variation

In order to get to know the range if the system behaviour - constituted by the equations 1.3
and 1.4 - some pde parameters are varied. The set ’a’ of initial conditions is kept unchanged.
Results of two runs are plotted in figure 4.2. The plots in the center and the bottom row show
results of the same run. The parameters H = 0.3, m = 0.6 and k = 1.9 ared used. The runs
to the plots in the top row were performed with the parameters H = 0.3, m = 0.8 and k = 1.9.
As clearly to see in figure 4.2 some parameter sets lead to the evolution of chaos. It is not
sure, whether the onset of chaos for some parameter sets is system inherent or a problem of
numerical accuracy. One comment to a possible problem of numerical accuracy. Comparing the
limit cycles in the u-v-phase plane (not shown here) of simulations with different parameter sets
leads to the following observation: If the limit cycle (before the onset of chaos) is considerably
close to the u- and v-axes the onset of chaos can be expected. Therefore it could be, that small
values of u and v are rounded to 0 which possibly leads to the onset of chaos. We choose a
parameter set which leads to chaose even for initial conditions a (regular oscillations expected)
and perform four simulations with changed initial conditions and this set. In one of the four
cases no chaos appeared till t = 4000. The other three initial conditions did not inhibit the
onset of chaos. With this we stop speculating about explanations, let the problem unsolved and
only present further observations.

The plots in figure 4.3 show the normal onset of chaos using parameter set A and initial con-
ditions b on the left hand side and the onset of chaos induced by changed parameters on the
right hand side. The mechanism in both cases look similar but the way till the mechanism starts
working is different. As described in section 2.1 and repeated at the beginning of chapter 4 the
normal onset of chaos is caused by the initial conditions. At the point x0 with v (t = 0, x0) = v∗

the populations are spatially separated and the population density is near 0 as can be seen in
the left plot of figure 4.3. The period time of the oscillations spatially close to x0 is smaller
than the period time at a larger distance. Regard the area of maximum density (dark red) as
a function ti of x. We need the index i because there is more than one maximum in temporal
direction. i = 1 indicates the first maximum density in temporal direction for increasing t with
t ≤ 0, i = 2 the second one and so on. The gradient ∂ti/∂x near x0 increases with increasing
i. Reaching some critical value it can not increase further and chaos breaks out. A similar
argumentation is used in section 4.3. Another view on this is, that the movement or diffusion
of the population near x0 decreases with increasing t. At some time point the velocity is too
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Figure 4.2: Plots to simulations with two different parameter sets. The parameters H and k in
both sets are equal with H = 0.3 and k = 1.9. For the plots in the top row the
parameter m is given by m = 0.8 and in the center and bottom rows by m = 0.6.
The initial conditions a are used for all simulations. The center and bottom row
differ in the way of visualisation (center: 3d plot, bottom: 2d color plot). The data
in both rows is equal. The plots in the three columns show the system behaviour at
different periods of time (left: 550 to 650, center: 700 to 800, right: 1500 to 1600). If
the parameters H = 0.3, m = 0.8 and k = 1.9 with initial conditions a are used (first
row), the system behaves regular. If the parameter m is changed to 0.6 and the rest
is unchanged (second and third row), chaos evolves in the system. The evolution of
the chaos in this case differs from the normal evolution of chaos in figure 4.1. In
figure 4.3 the onset of chaos for both cases is compared directly.

slow which leads to chaos. In the plot on the right hand side of figure 4.3 no gap splits the
population spatially. At one point x1 in space the populations starts moving slower. Or in other
words: The population is split in two domains with only a small connection left between them.
At this x1 the same situation prevails as at x0 while the normal onset of chaos. The mechanism
as described above by a critical gradient ∂ti/∂x or a too slow velocity of the population acts
here. It is striking, that x1 has about the same value as x0. Two simulations with slightly varied
initial conditions are performed (not plotted here). The parameters ε and x0 are the same as for
the initial conditions ’a’: ε = 0.0004, x0 = 0. For the one simulation δ is set to 0.008 and for the
other one to 0.015. x1 is further left for δ = 0.008 < 0.01 and further right for δ = 0.015 > 0.01.
Moreover the chaos evolves slower for larger δ. The two simulations show, that x1 ≈ x0 in figure
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Figure 4.3: The onset of chaos for two different sets of parameters and initial conditions is
plotted. For the simulation visualised in the plot on the left hand side the parameter
set A and initial conditions b are used. This plot shows the same data as those in
the center and right columns of figure 4.1 for other periods of time. On the right
hand side of this figure, simulation results for the parameters H = 0.3, m = 0.6
and k = 1.9 and initial conditions a are plotted. These results are equal to those
plotted in the center and bottom rows of figure 4.2. Chaotic oscillations itself are
not visible in both plots. The evolution of a disturbance which leads to chaos is clear
to see and different in both plots. In the plot on the left hand side there exists a
gap at x0 = 200. This means, that the populations oscillations left and right of x0
are separated from each other. The closer a position x in space is to x0 the smaller
the period times of the population oscillations at this position become. Contrary,
in the plot on the right hand side the population oscillations are connected over the
whole space (Not at the same time.). The connection fades away by ongoing time.
At some time point chaos arises. In this case it happens also at about x1 = 200. For
different initial conditions the spatial point of the onset of chaos varies.

4.3 is a coincidence.

Finally we want to give an overview about possible system behaviour and the associated pa-
rameter space of the pde parameters. As discussed in the second and third paragraph of section
2.1 (between equations 2.1 and 2.2) the nontrivial stationary point (u∗, v∗) is unstable with a
stable limit cycle if H < (1− p) / (1 + p) and stable or a saddle point otherwise. Hence for
H > (1− p) / (1 + p) the system behaviour is not interesting. But it should be mentioned here.
For H < (1− p) / (1 + p) two possibilities exist. In some cases the populations densities oscillate
ragular and in other ones chaos arises as we see in figure 4.2. Table 4.1 illustrates for a cutout
of the parameter space for which parameter sets which system behaviour can be expected. The
green areas indicate sets where H > (1− p) / (1 + p) is given. The yellow areas indicate regular
oscillations on a limit cycle and the red ones chaotic oscillations. The yellow and red marked
parameter combinations are all tested in simulations. The light red marked combinations are
not tested, however we expect chaos. The question mark ’?’ indicates combinations for which
no simulations are performed. Additionally we are not sure which system behaviour results.

4.2 Varying the growth rate

We multiply a new factor α as growth rate with the logistic growth of the prey in equation 1.3
and get a new system given by the equations 4.1 and 4.2. Instead of adding and varying α we
could vary m, k, v (t = 0, x), X and T to get the same results (see subsection 4.2.2 for more
details). Because working only with α is simpler, we do this. Simulation results for α = 1.1 are
plotted in figure 4.4. The figure is discussed in subsection 4.2.1.
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Table 4.1: Systembehaviour depending on the parameter set. Green areas: stable stationary
point ((1− p) / (1 + p) < H < (1− p) /p, with p = m/k); yellow and red areas: the-
oretically stable limit cycle around unstable stationary point (H < (1− p) / (1 + p))
but only in some cases regular oscillations (yellow) and in others chaos (red) (results
of simulations); light red: no simulations but chaos for sure; ’?’ (Question mark): no
simulations performed

ut = uxx + α · u (1− u)− u

u+H
v (4.1)

vt = vxx + k
u

u+ h
v −m (t) · v (4.2)

4.2.1 Simulation results for changed growth rate

In the simulations before this chapter α is equal 1. Here we increase α. Decreasing it does not
lead to qulitative new results. Increasing it does. Figure 4.4 shows plotted data of simulations
with α = 1.1. The time is increasing from the left to the right column (left t ∈ [300, 400], center
t ∈ [2000, 2100] and right t ∈ [9000, 9100]). In the bottom row the same data as in the top row
is displayed. The oscillations in the plots on the left hand side look similar to those which later
evolve to chaos (e.g. compare to fig 4.1 center). As the plots in the center and on the right hand
side of figure 4.4 document, no chaotic oscillations arise. Instead, new oscillations in spatial
direction appear. They develop at about x = 100 and propagate in both directions. Finally,
these oscillations occupy the whole spatial domain (not to see in fig 4.4). If α is increased, the
point x at which the new oscillations develop moves to the right. The plots in figure 4.5 indicate
this.

In some areas the development of the population density looks like a wave which travels trough
space. The topic of travelling waves is a huge one in the area of the modelling of popu-
lation and chemical reaction dynamics. Sherratt and Smith [2008] gives a good up-to-date
overview over methods, models and real world observations concerning this topic. Here we
mention and describe our observations briefly and do not go into detail. Figure 4.6 shows
some of the observed travelling waves. They are marked by a black bar. The plots in the
top row present data for the times intervals [4000, 4100], [5000, 5100], and [6000, 6100]. The
wave marked by the black bar moves slowly with about 100 spatial units per 1000 time units
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Figure 4.4: Plotted results of simulations with parameter set C, growth rate α = 1.1 and initial
conditions a for three different temporal intervals (from left to right: t ∈ [300, 400],
t ∈ [2000, 2100] and t ∈ [9000, 9100]). In the top row the results are plotted in 3d
with the space x on the x-, the time t on the y- and the population density u on
the z-axis. The bottom row contains 2d color plots which show the same data as
the plots in the top row. At x = 100 the population density does not oscillate in
time for t ∈ [300, 400] and t ∈ [2000, 2100]. The population is nearly split in two
parts. The plots on the right hand side show, that for large t (t ∈ [9000, 9100]) the
anomaly at x = 100 vanished or moved.

Figure 4.5: Plotted results of simulations with parameter set C, initial conditions a and two
different growth rates α (left: α = 1.3, right: α = 1.5). The gap where no temporal
oscillations occur is not located at x = 100 as in simulations with α = 1.1. For
α = 1.3 it is located at approximately x = 350 and for α = 1.5 at 650.

(≈ 0.1 [spatial units] / [time unit]) from left to right. The shape of the wave nearly does not
change. In figure 4.7 the population density u is plotted against the time for three values of t
out of the above mentioned intervals. The travelling wave is marked by a black box. In the area
left of the wave no further not by time deformed waves are existent. The bottom row cotains
three plots for the temporal intervals [8000, 8100], [10000, 10100] and [12000, 12100]. In each
plot two travelling waves are marked by a black bar. The right one is the same as in the plots of
the top row. The left one is new and evolved after t = 6100. Both waves move with a velocity
of approximately 0.1 [spatial units] / [time unit] and their shapes deform only slightly. Further
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Figure 4.6: Simulation results (initial conditions a, parameter set C, growth rate α = 1.1) are
plotted for six different temporal intervals. In the plots in the top row the advection
of a population peak (or wave) is marked by a black bar. The shape of the wave
does not change while the wave travels from left to right. In the plots in the bottom
row two travelling waves are marked. The right one in each plot matches to the one
marked in the top plots. The left one arose after t = 6100. Unfortunately the latter
wave is slightly deformed as a comparison of the plots on the left and on the right
hand side reveal: The wave is stretched. The velocity of the first wave constitutes
approximately 0.1 [spatial units] / [time unit]

Figure 4.7: The prey’s population density u is plotted against the space x for three different
time points. This figure and figure 4.6 (initial conditions a, parameter set C, growth
rate α = 1.1) are based on the same data. The travelling wave which is marked by
a black bar in figure 4.6 is marked by a black box in this figure. For t = 4010 (blue)
the wave is near the left boundary of the box, for t = 5002 (green) it is in the center
and for t = 6004 (red) it is near the right boundary.

36



examination of the travelling waves is out of the temporal scope of this work.

4.2.2 Attempts to explain the simulation results

Figure 4.8: Plotted results of simulations with parameter set C and initial conditions a. On the
left hand side and in the center the spatial extent X of the system is varied from
X = 1200 (normal size, not shown) to 1100 (left) and to 1300 (center). The results
plotted on the right hand side are obtained by dividing the normal initial values
of the predator density v by a factor f . Instead of v ∗ +ε (x− x0) + δ the formula
(v ∗+ε (x− x0) + δ) /f is used for computing v0 (x). In this case f = 1.2. Between
x = 300 and x = 400 a gap exists as in the plots of figures 4.4 and 4.5.

Another direction worth to consider and go into detail is to seek for a reason why the new
oscillations appear. Instead of changing α, other model parameters could be changed. If we
consider equation 1.1, we see that changing α means multiplying the parameter a with a factor
f with f = α. Consider we replace a by a · f , change f and keep α = 1. Then all parameters
und variables which contain a are changed:

m = µ/ (a · f) (4.3)

k = κ · γ/ (a · f) (4.4)

v = V · γ/ (u1 · a · f) (4.5)

tdimensionless = twith dimensions · a · f (4.6)

Tdimensionless = Twith dimensions · a · f (4.7)

xdimensionless = xwith dimensions ·
√
a · f/D (4.8)

Xdimensionless = Xwith dimensions ·
√
a · f/D (4.9)

The change of m and k (equations 4.3 and 4.4) does not lead to results as observed in subsection
4.2.1. The scaling of x and t (equations 4.8 and 4.6) is not important till comparing results to
real world data. It could be sensible to scale the spatial and temporal step sizes ∆x and ∆t
by
√
f . We did not do it. T (equation 4.7) has no effect on the simulations results. We set X

(equation 4.9) to 1100 and 1300 instead of 1200 and perform a simulation for each value with
parameter set C and no other changes. The results are plotted in figure 4.8 on the left hand side
and in the center. The variation of only X has not the effect as observed in subsection 4.2.1. If
a is multiplied by f then v has to be divided by f (equation 4.5). Therefore also v0 (x) has to
be divided by f (see equation 4.10). On the right hand side of figure 4.8 results of simulations
with changed initial conditions are plotted (equation 4.10, f = 1.2). Contrary to the changes of
the other parameters and variables, the change of v0 does lead to similar results as obtained in
subsection 4.2.1: A gap between x = 300 and x = 400 splits the population in two parts.
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v0 (x) = v (t = 0, x) = (v∗ + (ε (x− x0) + δ)) /f (4.10)

Finally through figure 4.8 we conclude, that new behaviour obtained in subsection 4.2.1 by
varying α is qualitatively reproducible by varying the initial values of the predator population.
As far as we know it is a new observation, that varying the initial conditions not only leads to
simple regular oscillations or chaos but also to more complex regular oscillations. In proceeding
works with the model a focus should be set on further variations of the initial conditions.

4.3 Spatially Varying parameters

For all simulation results presented in the chapters before, the pde parameters m, k, H and
α are kept constant in space and time during each simulation. In this section we vary some
parameters in space and describe and discuss the obtained simulation results. The spatial
variation of parameters can be implemented arbitrarily complex. We decide to increase the
growth rate α (introduced in section 4.2) and the mortality rate m linearly in space. The
equations 4.11 and 4.12 show the spatial dependence. 〈α〉 and 〈m〉 are equal to the values of
α and m defined in the used parameter set if not mentioned otherwise (e.g. for set A we get
〈α〉 = 1 and 〈m〉 = 0.6). In the simulations we present, either α or m depend on space and not
both at once. Therefore, either σ1 or σ2 is equal zero.

α (x) = 〈α〉
(

1 + σ1
x

X

)
(4.11)

m (x) = 〈m〉
(

1 + σ2
x

X

)
(4.12)

In figure 4.9 results of simulations with parameter set C, initial conditions a and variations of
σ1 and σ2 are plotted. The plots in each row show data of the same simulations but at to two
different times. The plots in the first row of figure 4.9 show the normal system behaviour and
are included for comparison only. The used values of σi for each row are written down in table
4.2.

row σ1 σ2 comment

top 0 % 0 % normal run without spatial gradient
center 5 % 0 % α increasing from left to right
bottom 0 % 5 % m increasing from left to right

Table 4.2: Values of σ1 and σ2 for the simulations which results are plotted in figure 4.9 and
some comments.

Consider the center row in figure 4.9: The period length of the spatial oscillations in the left hand
side plot is larger than in the right hand side one. As well, the movement velocity of population
peaks on the left hand side is larger than on the right hand side. Thus, the period length and
the velocity decrease with increasing time. Compared to the center row, the period length in
the plots in the top row is larger. Moreover the direction of the movement of population peaks
is inverted (top row: left to right; center row: right to left) and the velocity is also larger.
Consider the bottom row: The population density u is temporal constant in both plots for large
x (left plot: x ≥ 900; right plot: x ≤ 700). We call this area a beach because it looks like
one: Waves arrive from the left side at a slowly increasing area (More correctly they depart
from the beach.). Through increasing the mortality m from the left to the right, the stability
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Figure 4.9: Spatial Gradient in parameters leads to travelling waves; top row: predator’s mortal-
ity rate m and prey’s growth rate α constant in space (m = 0.8, α = 1.0); center row:
predator’s mortality rate m is constant in space and prey’s growth rate α increases
linearly from the left (x = 0) to the right (x = 1200) by 5% (m = 0.8, αx=0 = 1.00,
αx=1200 = 1.05); bottom row: predator’s mortality rate m increases linearly from the
left to the right by 5% and prey’s growth rate α is constant in space (mx=0 = 0.80,
mx=1200 = 0.84, α = 1.0); For m = 0.8 the non-trivial steady state is unstable and
for m = 0.84 it is stable. At m = 0.8143 the stability changes in terms of a Hopf
bifurcation (see the corresponding text or section 2.1 for more details). The black
lines in the plot of the bottom row indicate the position (vertical line) and stationary
population density u∗ (horizontal line) of the Hopf bifurcation.

of the nontrivial stationary state changes from unstable to stable. At H = (1− p) / (1 + p) =
(k −mHopf ) / (k +mHopf ) the Hopf bifurcation occurs (see section 2.1). If we rewrite this with
respect to mHopf we get equation 4.13. Replacing m (x) in equation 4.12 by the right hand
side of equation 4.13 and rewriting it with respect to x leads to equation 4.14. For X = 1200,
〈m〉 = 0.8, k = 1.9 and H = 0.4 the value of xHopf is 428.5714. This value is marked by the
black vertical line in the plots. The black line parallel to the x-axis indicates the nontrivial
stationary state u∗ at the bifurcation. It is computed by u∗ =

mHopf ·H
k−mHopf

= 1−H
2 and its value

is 0.3. Right of the intersection of both lines, (u∗, v∗) is stable. As to see in both plots in the
bottom line of figure 4.9 the waves cover a larger area than the stability of (u∗, v∗) lets expect
and the beach begins further right. The direction of movement of the waves is equal to that in
the plots in the center row und unequal to that in the plots in the top row of figure 4.9.
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mHopf = k · 1−H
1 +H

(4.13)

xHopf =
X

σ2
·
(

k

〈m〉
· 1−H

1 +H
− 1

)
(4.14)

The observations can be generalised for other values of σ1 and σ2. If σ1 or σ2 are increased, the
velocity of the waves decreases. In subsection 4.3.2 the dependence of the velocity on σ1 and
σ2 is discussed. If σ2 is larger than 0 and mHopf ) is larger than mHopf a beach appears on the
right hand side of the space. The area covered by the beach increases with increasing σ2. If
parameter set C is used as for figure 4.9, for σ2 = 5% already half of the spatial domain is covered
by the beach. To have more space with waves and less with beach we use another parameter
set and call it E. Set E which is equal to set C except for the value of 〈m〉: 〈msetC〉 = 0.8 and
〈msetE〉 = 0.75.

First of all, we are interested in impact of the initial conditions. If we spatially invert the
initial conditions in a system with spatially homogeneous pde parameters the oscillations are
also inverted spatially. How do the oscillations for inverted initial conditions look like if α or m
changes in space? This is topic in the following section.

4.3.1 Effects of variation in the initial conditions

Figure 4.10: Different initial conditions of the predator‘s populations density plotted against
the space. v∗ = 0.4885 is the steady state of the predator‘s populations density.
Parameter set E is used. The initial conditions are defined as follows:
- normal initial conditions a (blue line): v0 (x) = v∗ + 4 · 10−4 · x+ 0.01;
- inverted initial conditions a (green line): v0 (x) = v∗− 4 · 10−4 · (x− 1200) + 0.01;
- constant low initial conditions (red line): v0 (x) = v∗ + 0.01;
- constant high initial conditions (cyan line): v0 (x) = v∗ + 0.49;

In this subsection we vary the initial conditions and discuss the resulting effects. If not mentioned
otherwise, the simulations are performed with parameter set E. Four different initial conditions
are used here. They are plotted in figure 4.10. Figure 4.11 shows plots with results of simulation
with parameter set E and the four given initial conditions. The time increases from the left hand
side plot to the right hand side one. σ2 is set to 2% in each simulation. The initial conditions
used in the different rows are noted at the left hand side of each row and in table 4.3.

Comparing the associated plots in the first and the second row reveals, that the travelling wave
velocity is smaller for the inverted initial conditions. Moreover there is an anomaly in the waves
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Figure 4.11: Plots for spatially increasing mortality (mright is 2% larger than mleft), different
initial conditions and at different times. Top row: Initial conditions a (normal
ones); second row: inverted initial conditions a (x0 = 1200, δ = 0.01 and ε =
−0.0004); third row: constant low initial conditions (x0 = 0, δ = 0.01 and ε = 0);
bottom row: constant high initial conditions (x0 = 0, δ = 0.49 = 4·10−4 ·1200+0.01
and ε = 0); columns from left to right: t ∈ [2900, 3000], t ∈ [4900, 5000] and
t ∈ [6900, 7000]. The plots in the second row show a perturbation in the oscillations
compared to the plots in the top line. The perturbation moves from right to left
in space while the wave length of the perturbed oscillation decreases. The plots in
the third and in the bottom row show oscillations with equal temporal and spatial
period length. For all initial conditions the velocity of the travelling waves decreases
with increasing time. Parameter set E is used.

which moves from the right to the left and grows. This anomaly also appears in simulations
with normal initial conditions for larger t (see subsection 4.3.2). If spatially constant initial
conditions are used, the period time and period length of the oscillations are independent of the
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row number line color
initial conditions

in fig 4.11 in fig 4.10

1 blue initial conditions a
(from now on called normal initial conditions)

2 green spatially inverted initial conditions a
(called: inverted initial conditions)

3 red spatially constant initial conditions with v0 (x) = 0.01
(called: constant low initial conditions)

4 cyan spatially constant initial conditions with v0 (x) = 0.49
(called: constant high initial conditions)

Table 4.3: Description of the initial conditions in figures 4.10 and 4.11

value of v0 as the plots in the third and fourth row show. In general the period length of the
travelling waves is smaller if the initial conditions vary in space. Although it does not matter
if v0 (x) increases or decreases with increasing x. Moreover the velocity of the travelling waves
is approximately equal for normal and constant initial conditions. It is notably, that travelling
waves arise and decelerate for each of the four tested initial conditions. Therefore we can assume,
that not a particular combination initial conditions and spatially varying parameters induce the
travelling waves, but that only through introducing spatially varying parameters these waves
arise.

4.3.2 Velocity of travelling waves

Figure 4.12: Plots with results of one simulation with parameter set E, σ1 = 5% and σ2 = 0%.
From top left to bottom right the time increases. In table 4.4 and the text below (or
above) the transformation of the spatio-temporal oscillations is descirbed briefly.

In figure 4.12 we see results of a simulation with parameter set E and growth rate α spatially
increasing by σ1 = 5% plotted for six different time intervals. The plots show, that the spatio-
temporal oscillations change with advancing time. The following description is summarised in
table 4.4. At first (top left plot) on the right and on the left boundary of the space population

42



plot movement of the waves

top left waves arise at the left and right boundary, move towards x ≈ 200 and
vanish there

top center waves arise at the right boundary and move to the left; at first they
are fast, then decelerate till x ≈ 1000, move with constant velocity till
x ≈ 200 and finally accelerate again;

top right waves arise at the right boundary and move to the left: at first they are
fast, then decelerate till x ≈ 200 and then move with constant velocity
till they arrive at the right boundary; The constant velocity here is
slower than in the top center plot.

bottom left like top right but an anomaly appears at x ≈ 200 where the waves’
velocities fluctuate

bottom center like bottom left but the anomaly expands in space and chaos-like oscil-
lations arise

bottom right the anomaly continues expanding compared to the plot bottom center

Table 4.4: A brief description of the transformation of the spatio-temporal oscillations in the
plots of figure 4.12.

maxima arise and move to the center. They collide at x ≈ 200 and vanish while at the boundaries
new waves arise. In the second plot (top center) waves are generated only on the right hand
side, move to the left (negative velocity) and vanish at the left hand side. Their velocity is high
at the left boundary, decreases till x ≈ 1000, remains constant till x ≈ 300 and finally increases
again. The wave movement in the third plot (top right) is similar to the that in the second one.
It differs near the left boundary: The wave’s velocity continues decreasing till the wave vanishes
and does not increase again. The fourth plot (bottom left) shows the emergence of an anomaly
at x ≈ 200. Near it the velocity of the waves fluctuates. In the fifth (bottom center) and sixth
(bottom right) plot this anomaly expands in space and some oscillations which could be chaotic
oscillations arise. We did not test whether they are chaotic one or not. The evolution of the
system behaviour for other values of σ1 is qualitative equal to the just described one in figure
4.12. If σ1 is larger, the process is faster and, if σ1 is smaller, the process is slower.

In figure 4.12 the waves decelerate from the first to the second, from the second to the third
and from the third to the fourth plot. In the fourth plot the deceleration stops and the anomaly
appears. It seams, that the waves’ velocities converge towards a minimal velocity at which
possibly chaotic oscillations arise. This observation is comparable to that of simulations with
other values of σ1. We compute the velocity of the travelling waves in the area where the velocity
is constant and plot it against the time in figure 4.13. The different line colors indicate different
values of σ1. The black dots mark the onset of chaotic oscillations. In the following we discuss
the absolute values of the velocities. Therefore, decreasing means value moves towards zero. It is
obvious, that the velocities converge towards one constant value at which chaos sets on. If σ1 is
large, the velocity decreases faster compared to a smaller σ1. Moreover, the chaotic oscillations
arise earlier if σ1 is larger. The critical minimal absolute velocity at which the chaos emerges is
between 6 and 9 [spatial units] / [time unit] for each σ1 as table 4.5 illustrates but it increases
slightly with decreasing σ1. We are not sure if the final velocity really increases or if the observed
correlation between σ1 and the final velocity is a result of our velocity computations which are
described in the next paragraph.

The automation of the velocity computation in the region where the velocity is nearly constant
is complicated. Each time step the positions of the density maxima have to be computed. The
positions of the maxima of two consecutive have to be compared to compute the velocity. In
advance, it is not clear in which direction a maximum moves. If the maxima move too fast, the
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Figure 4.13: Minimal (referred to the absolute value) velocities (computed within the area where
the velocity is constant) plotted against the time t for different values of σ1 = σ.
The velocities decrease (referred to the absolute value). They decrease faster if
σ1 is larger. At some minimal velocity chaotic oscillations arise. The black dots
mark the onset of them. After the chaotic oscillations started, the velocities do not
decrease anymore. These observations are presented more clearly in figure 4.14.
The velocities at which chaos arises are written down in table 4.5 for different
values of σ1.

Figure 4.14: Like figure 4.13 but less data and the scaled axes.

wrong maxima could be compared for computing the velocity. At the left and right boundary
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σ1 time t |velocity |
12 % 4000 6.79
10 % 4500 6.49
8 % 5000 7.01
6 % 6000 7.65
5 % 7500 8.46
4 % 14000 8.77
3 % > 50000
2 % > 50000
1 % > 50000

Table 4.5: Velocity and time at which chaos arises for different values of σ1. The velocity is
negative because the waves move from the left to the right. We discuss absolute
velocities. Each 500th time unit the system behaviour is checked and the velocity is
computed.

maxima appear and disappear from time to time. This can be an error source. Finally, it
is difficult to implement the automated determination of the region with constant velocity.
Nevertheless, we implemented a automated velocity computation but it did not work well.
Because we did not want to include an existing package from a third person and familiarise us
with it, we computed the velocity by hand - supported by some tricks - for each 500th time unit.
The observation, that the final absolute velocity before chaos arises increase with decreasing σ1,
could be a results of these discrete computations. This should be checked in another project.

4.4 Summary Parameter Variation

In this chapter we varied the parameters of the pde system (equations 1.3 and 1.4) in different
ways and produced some interesting results. We started with a variation of the predator’s
mortality rate in section 4.1 and produced chaotic oscillations without a change of the initial
conditions. The onset of chaos in this case does not look like the normal onset of chaos induced
by the initial conditions as figure 4.3 clarifies. It is no clear whether the chaotic oscillations
either would arise in the analytic solution (if it was existent) as well or are a result of numerical
inaccuracy. Moreover we found further sets of pde parameters which led to chaotic oscillations
without a change of the initial conditions, too. In table 4.1 we presented a discrete cutout of
the parameter space of H, m and k and added the resulting system behaviour.

In section 4.2 we extended the model by a prey’s growth rate α. The modified model is given by
the equations 4.1 and 4.2. Increasing the growth rate led to anomalous regular oscillations which
start a one point x1 in space and spread over the whole space (figure 4.4). The point x1 depends
on the value of α as long as α > 1 as we showed in figure 4.5. Additionally, in figures 4.6 and
4.7 we found some population peaks which look like travelling waves. Instead of introducing
and varying α the initial predator density v0 (x) can be declined to induce qualitatively the
same oscillations as the plot on the right hand side of figure 4.8 illustrates. Because the initial
conditions cause the new oscillations and because its onset looks similar to the one of chaos, we
expect that these new regular oscillations are near the boundary to chaotic oscillations.

Finally in section 4.3 the growth rate α and the mortality m were varied linearly in space. The
decency is defined by the equations 4.11 and 4.12. The variation of one the two parameters in
space leads to travelling waves as the plots in the center and bottom row of figure 4.9 show.
The velocity of the waves and the wave length decrease with increasing time. If the non-trivial
steady state (u∗, v∗) is stable in one part of the space and instable in the other, the population
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density becomes temporally constant in the first part and oscillates regular in the second one.
The oscillations reach a bit into the spatial part where the steady state is stable. The point
where the stability changes is called Hopf bifurcation (bottom row of figure 4.9). The travelling
waves arise independent of the initial conditions as figure 4.11 shows but they differ in length
and velocity denpending on the initial conditions. The waves start moving fast, then decelerate
and at some minimal critical velocity chaotic oscillations arise (see figure 4.12). The larger the
spatial gradient of the growth rate α the faster is the deceleration and earlier the onset of chaos.
Figures 4.13 and 4.14 illustrate this well. These figures and the data in table 4.5 suggest that
the critical velocity depends on the spatial gradient of α. We are not sure whether this relation
is correct or it is a coincidence caused by our way to compute the velocities only each 500th
time unit. If the arising oscillations are chaotic ones, is not clear as well.
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5 Introduction of Noise

5.1 Motivation II: Why noise?

There are two main reason why to add noise to a population model. One is the Moran Effect:
Through spatially correlated noise a spatial synchronising of population densities takes place.
An example for spatially correlated noise is the influence of atmospheric weather systems (rain,
drought/heat) on animal populations. For more information concerning the Moran Effect I refer
to (Ranta et al. [1997a], Royama [1982]).

The other reason for noise in a model is to make the simulation more realistic: Real world
data is expected to be noisy. The simulations we performed for the preceding chapters are
deterministic ones. Diffusion reaction partial differential equations in general define a mean
expected density at each point in time and space. Therefore the solution is the most probable
density distribution. Especially extreme events are not included in the results. To make real
observations and simulation results better comparable it is sensible to add noise. Different
spatial scales of noise correlation are imaginable. Large scale correlations through atmospheric
influences are one possibility (see further Ranta et al. [1995], Ranta et al. [2000]). Medium and
small scale correlations through forest fires, floods or large groups of riflemen are another one.
Also noise without any spatial correlation would be sensible: A lynx is killed by a falling tree
or a car or a hare has a very secure hiding and gets more offspring then normally. In this work
we use noise correlated on a large spatially scale.

Our further technical procedure is similar to that in Petrovskii et al. [2010]. The difference is
that Petrovskii et al. [2010] analysed the suppression of chaotic oscillations through noise in a
system with initial conditions which should lead to chaos. In opposite we work with a system
using initial conditions which should lead to regular oscillations. As we will see below in 5.4,
regular oscillations can be converted to chaotic ones in the presence of noise.

5.2 Application and Implementation of the Noise I

We use the equations 4.1 and 4.2 in which the prey’s growth rate α, the Michaelis-Menten
constant H, the food utilisation rate k and the predator’s mortality m are parameters. Following
we add noise to α and m separately. In Petrovskii et al. [2010] noise was only added to one
of the rates but not to both at the same time. In the general case the prey and predator are
affected different by the weather. If we have for example frogs (predator) and insects (prey),
heavy rain has another influence on the frog population than on the insect population. Therefore
Petrovskii et al. [2010] adds noise either to the one rate or the other. For more information I
refer to Milne et al. [1965] and Blackshaw and Petrovskii [2007]. Our analysis we motivated by
the Canadian snowshoe hare and the Canadian lynx. The effect of the weather on both species
can be considered to be similar. Nevertheless we add noise to the growth or the mortality rate
separately. The food utilisation rate k and the Michaelis-Menten constant H are kept unchanged.

The noise is added accordingly to Petrovskii et al. [2010] and similar to the equations 4.11 and
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4.12:

α (t) = 〈α〉 (1 + σ1η (t)) (5.1)

m (t) = 〈m〉 (1 + σ2η (t)) (5.2)

〈a〉 and 〈m〉 are the mean growth and the mean mortality rates as in section 4.2. The η are
uniformly distributed uncorrelated random numbers within the interval [−1; 1]. To generate the
η’s we used the Mersenne Twister (Matsumoto and Nishimura [1998], Matsumoto [1998]) as
implemented in Matlab 2010a and 2010b as generator algorithm mt19937ar. For further infor-
mation see the documentation of Matlab R2010a [MathWorks, 2010a] or R2010b [MathWorks,
2010b] in the chapter Creating and Controlling a Random Number Stream or the publications of
Matsumoto. The chosen initial values for the generator are documented and can be forwarded
on request. The generator is only used to generate the η’s and no other random numbers. σ1
and σ2 scale the influence of the random numbers with σi ∈ [0; 1]. Thereby σi = 0 relates to
0 % noise and σi = 1 to 100 %. η is not drawn new each time step but keeps constant for a
time period of the length T0 after which it is redrawn from the interval [−1; 1]. This kind of
noise is also called kangaroo type of noise (van Kampen [1992]). Figure 5.1 illustrates this. η is
independent of x and at each position x in space the same noise is applied to alpha and m.

Figure 5.1: The random number η is used for a temporal period of the length T0 and redrawn
after that. η ∼ Uniform [−1; 1] and ti+1 = ti + T0.

Why did we choose the noise in the above described way? The argumentation is equal to that
of Petrovskii et al. [2010]. We assume the noise is the effect of a atmospheric weather systems
of a large spatial scale or climate variations. Those weather systems have a size of the order
of 103 km (Monin [1986]). Therefore the noise can be expected to be homogeneous in space.
Furthermore the systems provide a similar weather for some period of time. The replacement
of an old weather systems by a new one occurs on a small time scale compared to the time
scale of constant weather. See Monin [1986] for more details. T0 relates to the temporal period
of constant weather. Both systems need not to be correlated to each other and therefore it is
sensible to choose η as non-correlated random numbers. In general the resulting kind of noise is
called white noise. Steele [1985] and Vasseur and Yodzis [2004] discuss why white noise seems
to be more appropriate than colored noise (= correlated random numbers). We call our noise
kangaroo type noise because we hold a random number for a certain time before we generate a
new one which is reminiscent of jumps of a kangaroo.

A further reason for the kangaroo type of noise is of technical nature. The application of
schemas for non-stochastic pdes on stochastic pdes can lead to problems and wrong solutions.
The noise in our case stays constant for several time steps. Therefore the given system of partial
differential equations does not need to be considered as system of stochastic pdes. Thus the
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numerical schemas mentioned in section 2.2 are still valid. This saves time and computation
capacity.

5.3 First Observations I: Strong dependence on size of time steps

Till now we used ∆x = 0.1 (spatial step) and ∆t = 0.1 (time step) in our numeric solution
(see section 2.2). We worked primary with parameter set A and initial conditions a (regular
behaviour) applied on the system of partial differential equations given by equations 1.5 and
1.6. For this purpose ∆t = 0.1 is sufficient. As soon as we add noise, some problems emerge
and the time step has to be chosen smaller. ∆x will not be discussed because its value of 0.1 is
small enough in all cases.

Figure 5.2: The prey density for the given system with parameter set A, initial conditions b
(chaos) and no noise. Three different sizes of time steps ∆t are used for solving the
pde system numerically. They are given above each plot. Decreasing ∆t decreases
the period time of the regular oscillations. The chaotic oscillations also differ for
different sizes of the time steps but the general system behaviour does not change.

We choose parameter set A and initial conditions b for chaotic behaviour. Figure 5.2 shows plots
for three different choices of ∆t. On the right-hand site of each plot regular oscillations prevail
and on the left hand site chaotic oscillations. If ∆t is decreased the period time of the regular
oscillation is decreased slightly. It seams as the oscillations are phase shifted for different ∆t.
This is the effect of the different period times. The chaotic oscillations in each plot differ a little
bit but the overall system behaviour is unchanged.

We will go into detail on the oscillations in temporal direction and consider the reaction terms
of the pde system 1.3 and 1.4 only. Thus we get a system of ordinary differential equations as
follows (5.3, 5.4).

ut = u (1− u)− u

u+H
v (5.3)

vt = k
u

u+ h
v −m · v (5.4)

Figure 5.3 shows plots of numeric solutions of this system for different ∆t (colors), different
times (left to right) and using different numeric schemata (top and bottom row). For the results
in the top row the euler schema is applied and for those in the bottom row the Runge-Kutta
schema 4th order (RK4) [cf. Hairer et al., 2010]. Which line color and line style corresponds
to which ∆t is given in the legend bottom right. Parameter set C is used. Set A leads to
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similar results. The density of the prey population is plotted. The predator population shows
qualitatively the same system behaviour. If ∆t is decreased, the period time and the amplitude
of the oscillation decrease. The latter conclusion is obvious. The first conclusion concerning the
period time follows through comparison of the plots on the left hand site and in the center. The
left ones show a small phase shift between the different coloured lines and the centred ones a
larger shift. The unique explanation for this observation is a difference in the period time of the
different oscillations. Compare both schemata: The deviation of the amplitude for different ∆t
is nearly equal for Euler and RK4. Whereas the deviation of the period time is smaller when
using the Runge-Kutta 4 schema (compare plots in the center). The plots on the right-hand site
show that even for ∆t = 0.01 the RK4 schema leads to a deviating period time. The difference
in the amplitude between ∆t = 0.010 and ∆t = 0.005 is small for both schemata. Therefore
the Runge-Kutta schema is not reasonable better than the Euler. Hence in a view of runtime
performance it is sensible to use the Euler schema. The amplitude of the oscillation converges
to a constant value for ∆t → 0, whereas for ∆t ≤ 0.01 the amplitude has an acceptable value.
Thus ∆t = 0.01 seems to be a good value for simulations, ignoring the deviation of the period
time. Nevertheless, it has to be emphasised, that the system behaviour is the same for all four
sizes of ∆t. The diffusion term without the reaction is not considered here.

Figure 5.3: Numerical solutions for the reaction part of the pde system 1.5 and 1.6 for parameter
set C. The top row shows numerical solutions obtained by using the Euler Schema and
the bottom row by the Runge-Kutta Schema fourth order (RK4). The different colors
represent different sizes of time steps ∆t. The mapping is given in the legend bottom
right. The different plots in each row show the prey population at different times
(see x-axes). For both schemata ∆t > 0.01 leads very early to obvious differences in
period time and amplitude of the oscillations compared to smaller time steps. Using
the Runge-Kutta Schema (bottom row) the results for different ∆t differ less. For
large times (plots on the left hand site) even a difference between the solutions for
∆t = 0.01 and ∆t = 0.005 using the RK4 is quite clear to see in the phase shift
of the oscillation. At the same time the amplitudes for these two time steps are
nearly equal. Therefore ∆t = 0.01 looks as a good choice between accuracy and
performance.

In chapter 3 we are interested in the correlation between mean densities. The larger amplitudes
and period times in simulations with ∆t = 0.1 compared to ∆t ≥ 0.01 can be considered as
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Figure 5.4: The prey density of simulations with parameter set C, initial conditions a (regular
oscillations) and noise (noise intensity σ = 0.1) is plotted here. Three different
sizes of time steps ∆t are used for solving the pde system numerically. They are
given above each plot. The plots in the top row show simulations with noise on the
growth rate of the prey and those in the bottom row show simulations with noise
on the mortality rate of the predator. Between ∆t = 0.1 in the left column and
∆t = 0.01 and 0.001 in the center and right column the system behaviour differs
strongly. Whereas for ∆t = 0.1 in the bottom row we get chaotic oscillations at
about x = 500 which later spread over the whole space (not shown), we get nice
spatially homogeneous oscillations with varying amplitudes for ∆t = 0.01 and 0.001
in the bottom row. In the top row something similar happens.

simulations with ∆t = 0.01 and additionally amplitude and period time scaled by constant
factors. If the values of a time series are scaled and the time frame of it is stretched the
correlation coefficient for two of these time series should not be affected by the scaling and
stretching. Therefore the correlation coefficients in chapter 3 stay the same. The other pure
qualitative observations are also not affected. Bearing in mind that smaller ∆t increases the
computing time, ∆t = 0.1 was a good choice for the parameter set A and C and initial conditions
a in chapter 3.

When noise is introduced a problem with the choice of ∆t appears. Figure 5.4 points it out.
Noise of the intensity σi = 0.1 is added to the growth rate of the prey (top row) and to the
mortality rate of the predator (bottom row). ∆t is varied as in figure 5.2. In both rows chaotic
oscillations arise for ∆t = 0.1. Time passing, the chaotic domains expand and finally the whole
area is occupied by chaotic oscillations (not shown). For ∆t ≤ 0.01 instead the results differ:
If noise is applied to the predators mortality (bottom row), the oscillations stay regular and
the densities become spatially homogeneous. If noise is applied to the preys growth rate (top
row), the oscillations look more interesting than those without noise but finally (not shown) the
densities become spatially homogeneous. Since the system behaviour changes for different ∆t,
the choice of ∆t is crucial after introducing noise into the model. Our observations lead to the
assumption, that ∆t = 0.01 is a sufficient small value. For smaller values the systems behaviour
does not change significantly anymore.
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5.4 First Observations II: Different system behaviour for different
sets of parameters

In their work Petrovskii et al. [2010] used initial conditions which lead to chaotic system be-
haviour. They applied noise of different intensities and analysed the chaos suppressing influence
of this noise. The effect of noise on a system with regular behaviour was not within the scope
their analysis. One can expect that noise applied to a system with regular behaviour leads to
more realistic and more interesting oscillations whilst the behaviour stays non-chaotic. As we
see below this expectation is not fulfilled. Depending on the system parameters we get chaotic
oscillations or spatially homogeneous densities.

Figure 5.5: Noise of the intensity σ = 20% on the predator’s mortality rate of parameter set A,
∆t = 0.01 (∆t = 0.001 leads to the same qualitative behaviour). The initial values
(seeds) of the used sets of random numbers are given in front of each row if someone
should try to reproduce my results with my code. As initial conditions the set a is
used and as pde parameter set the set A.

As discussed in section 5.3 the system shows non-chaotic behaviour for parameter set C with noise
of the intensity 10% and ∆t ≤ 0.01. Consider figure 5.4 again. The plots in the center and on
the right hand side of the bottom row show spatially homogeneous densities. The corresponding
plots in the top row show some interesting behaviour in space but simulating further in time
(not plotted), the densities here become also homogeneous in space. This observation is valid
for all generated set of random numbers we tested. Thus, we do not get more interesting regular
oscillations as expected but more boring ones. Just as well we could only solve the reaction
terms without diffusion. One reason for this could be the Moran effect which was mentioned at
the beginning of section 5.1. We will not discuss this deeper but realise, that parameter set C
with noise added as defined above is not usable for our analysis.

If parameter set C leads to spatially homogeneous densities one can expect that set A with
noise leads to the same results. That is not always the case as can be seen in figure 5.5. In the
two rows simulation results for two different sets of random numbers are shown. Noise of the
intensity 20% is applied on the mortality rate of the predator. The data is plotted for the time
intervals [1000, 1100] (right), [1700, 1800] (center) and [3200, 3300] (left). In both simulations a
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noise system noise intensity σ
applied behaviour 5% 10% 20%
on numb. numb. numb.

abs. rel. abs. rel. abs. rel.

mortality
chaos 18 100.0% 17 94.4% 10 55.6%
homogeneous 0 0.0% 1 5.6% 6 33.3%
unclear 0 0.0% 0 0.0% 2 11.1%

growth rate
chaos 12 66.7% 17 94.4% 9 50.0%
homogeneous 5 27.8% 1 5.6% 5 27.8%
unclear 1 5.6.% 0 0.0% 4 22.2%

Table 5.1: On the growth rate and the mortality (each separate, see left column) of parameter
set A eighteen different sets of random numbers are applied. The noise intensities
5%, 10% and 20% are used (see first row). Three different system behaviours are
observed: chaotic (as in figure 5.5 top row), spatially homogeneous (as in figure
5.5 bottom row) or no clear prevailing of the two before mentioned over the whole
runtime. The absolute (columns abs. in the table) and relative numbers (columns rel.
in the table) of cases where each behaviour occurred for the different noise intensities
σ is given in this table.

Figure 5.6: Simulations with parameter set A, initial condtions a, 20% noise on the growth
rate α; At t = 4200 (plot bottom right) chaos prevails. Some regions of regular
oscillations arise between t = 4300 and t = 4500 as to see in the plot bottom center.
These regions fade till t = 5200 (plot bottom left) but arise again until t = 6500
(plot top right). At t = 8200 (plot top center) the chaotic regions are shrunken to
one short region. Till t = 9900 (plot top left) this one region grew again.
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region of chaotic oscillations exists at t = 1000 (right). For seed 0948 (= initial value for random
number generator) the region of chaotic oscillations splits up and the new regions move in space
(plot top center). Later in time chaos prevails in the whole space (plot top left). For seed 3851
the chaotic oscillations decay until t = 1800. After that the densities are spatially homogeneous.
In ten of eighteen cases (= eighteen different sets of random numbers) chaos prevailed finally.
Table 5.1 gives an overview over results of simulations with other noise intensities.

In some cases this system exhibits not only chaos dominated or regular oscillations dominated
behaviour but also a mixed behaviour, denoted as unclear in the table. Figure 5.6 shows plots
of one of these cases. At t = 4200 (plot bottom right) chaos prevails. Some regions of regular
oscillations arise between t = 4300 and t = 4500 as to see in the plot bottom center. These
regions fade till t = 5200 (plot bottom left) but arise again until t = 6500 (plot top right). At
t = 8200 (plot top center) the chaotic regions are shrunken to one short region. Till t = 9900
(plot top left) this one region grows again. We did not perform simulations for T ≥ 10000 and
thus do not know the final system behaviour.

For now we have an interesting new system behaviour which alternates between regular and
irregular oscillations. Perhaps some connection exists to the findings in section 4.2 where new
spatial oscillations are cause by the variation of the groth rate α. Here the parameter set A and
in section 4.2 the set C is used, but in both cases α is varied. In further studies one could go
deeper into detail at this spot.

5.5 Summary, Outlook and Noise II

In this chapter we defined noise and added it to the pde system (equations 1.3 and 1.4). The
aim was to obtain more realistic oscillations. In general noise can lead to a more realistic system
or to a spatial synchronisation of the oscillations. The latter effect can happen, if the noise is
correlated on a large spatial scale. This effect is called Moran Effect. We decided to use spatially
homogeneous noise of a kangaroo type in time (see figure 5.1) and added it to the prey’s growth
rate α or the predator’s mortality rate m (equations 5.1 and 5.2). Spatially homogeneous noise
represents influences of the weather or the seasons. Technically it is practical to use kangaroo
type noise and add it to some pde parameters as reasoned in section 5.2.

Section 5.3 describes a problem we met concerning the choise of the time step ∆t after we added
noise. The size of ∆t is sufficient for solving the deterministic pde system represented by the
equations 1.3 and 1.4. The period time and amplitude of oscillations depend slightly on ∆t as
figure 5.3 illustrates but the system behaviour itself is not affected (figure 5.2). Therefore the
results in chapter 3 need not to be reproduced by simulations with smaller choises of the time
step. In chapter 4 we already used a smaller ∆t. If noise is added to one of the parameters
the system behaviour depends on the size of the time step. Figure 5.4 shows clearly that for
∆t = 0.1 the behaviour is distinguishable from that for ∆t = 0.01 and ∆t = 0.001. ∆t = 0.01
seems to be sufficient small.

In section 5.4 the effect of noise on the system behviour using the parameter sets A and C is
discussed. The temporal oscillations synchronise spatially in simulations with parameter set C
for each set of random numbers we tested. It could be the results of the Moran Effect. Using
parameter set A leads to different system behaviours. In some cases the population densities
homogenise in space as for set C (figure 5.5 bottom row) and in some others chaotic oscillations
arise and spread over the whole space (5.5 top row). Additionally, a coexistence of both system
behaviours is possible as figure 5.6 shows. We did not clarify whether the state of coexistence
lasts for ever or one behaviour prevails after a long period of time.

Finally we have a problem: Parameter set C with noise applied leads to less realistic system
behaviour and parameter set A with noise leads to unpredictable system behaviour. Before the
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latter case is not analysed more in detail, it is not sensible to use the simulations results for
other studies - e.g. those of chapter 3. There are three different ways to proceed further: a)
We wait till the system with parameter set A and noise is analysed more in detail. b) We find
another parameter set which leads to the system behaviour we want when applying the noise as
defined in section 5.2. c) We apply another kind of noise on the system and look what happens.

How could other kind of noise look like? We could combine the approach of spatially variing
parameters (section 4.3, equations 4.11 and 4.12) with random numbers as defined in section
5.2 (text in section and equations 5.1 and 5.2). The parameters α and m would be defined as
follows in equations 5.5 and 5.6:

α (x) = 〈α〉
(

1 + σ1η (t)
x

X

)
(5.5)

m (x) = 〈m〉
(

1 + σ2η (t)
x

X

)
(5.6)

Nice concerning this solutions: Everything is implemented already and therefore we have not
much work with coding. Also other spatial relations are imaginable. With this suggestion for a
second kind of noise we close this chapter and proceed with the work on the chaotic system in
chapter 6.
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6 Chaotic System

6.1 Islands of Order

Figure 6.1: Islands of Order in the Chaos; Results of simulations with parameter set D, initial
conditions d and no noise are plotted for different time intervals. In the top row from
right to left data of the following time intervals is plotted: [1800, 1900], [1900, 2000]
and [2000, 2100]. In the bottom row the intervals are [2600, 2700], [2700, 2800] and
[2800, 2900]. At t ≈ 1850 and 0 ≤ x ≤ 200 (plot top right) regular oscillations emerge
and persist till at least t = 2100 (plot top left). In doing so the size of the region
declines which starts at about t = 2050. In the plot in the bottom row the islands
of regular oscillations are not as obvious. At the position 500 ≤ x ≤ 700 and the
time t = 2680 emerges an island which disappears already at t = 2720. This island
is not counted because the period of time of its existence is to short. The regular
oscillations which arise at 850 ≤ x1050 and t = 2670 are counted because they last
till some time between 2800 and 2850.

During oscillations of spatio-temporal chaos some regions arise in which the oscillations seem to
be regular. In figure 6.1 results of simulations with parameter set D and initial conditions d are
plotted for the time intervals [1800, 2100] (top row) and [2600, 2900] (bottom row). A region of
regular oscillations is good to see in the plots of the top row at 0 ≤ x ≤ 200. Existent regions in
the plots of the bottom row are listed in the caption of figure 6.1. We call the regions of regular
oscillations also islands of order (in an ocean of spatio-temporal chaotic oscillations)

We counted these islands and computed the ratio between whole area and area with regular
oscillations. With region/area we name here the plane which is spanned by the space and time.
The whole area has a size of X × T . If we count and measure each region of regular oscillations
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with a size of at least 150× 200 (x× t), we find about 20 regions which cover about 5% of the
whole area. If we count and measure each region of regular oscillations with a size of at least
130× 150 (x× t), we find about 65 regions which cover about 10% of the whole area.

6.2 Chaos Suppression through noise

In Petrovskii et al. [2010] the suppression of spatio-temporal chaos through adding noise on
some system parameters was observed. They computed the probability of chaos suppression
depending on the intensity of the noise (cf. figure 4 and 5 in Petrovskii et al. [2010]). The noise
is defined in the same way as in section 5.2 of this report. Interesting is, that the dependency
of the chaos suppression probability on the noise intensity can not be described by a entire
monotone increasing or entire monotone decreasing function as could be expected. In Petrovskii
et al. [2010] was remarked, that the shape of the function depends on the chosen parameters of
the system of partial differential equations (the same system as 1.3 and 1.4). Also the choice
of the random number generator could have an influence (personal communication). Here we
want to reproduce the results of Petrovskii et al. [2010]. Therefore we used the same set of
pde parameters and initial conditions but another implementation of the numeric schemata and
another random number generator.

The parameter set of Petrovskii et al. [2010] we called set D in section 2.3 on page 15. Their set
of initial conditions is our set d (also section 2.3). These initial conditions lead to the formation
chaos in the middle of the space [0, 1200] at x = 600.

Petrovskii et al. [2010] used a linear congruental generator of the form Xn+1 = (aXn + b) mod j
with appropriately chosen parameters a, b and j. For more information about choosing a, b and
j I refer to L’Ecuyer [1999]. We used the Mersenne Twister as described in section 5.2.

We ran simulations with fourteen different noise intensities and each fifty different sets of random
numbers. Table 6.1 shows the absolute number of cases (= sets of random numbers) with
chaos suppression and the relative number. The latter one is equal to the probability of chaos
suppression.

Figure 6.2: Data of table 6.1 visualised. Comparable to figures 4 and 5 on page 8 of Petrovskii
et al. [2010]. The errorbars indicate the change of the probability if one case of chaos
suppression is changed to non-suppression or the other way around (±2%).

Noise on the growth rate of the prey and noise on the mortality rate of the predator is long to
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noise on growth rate noise on mortality rate
number of sets with number of sets with
chaos suppression chaos suppression

σ
absolute

relative
absolute

relative
of 50 of 50

0,1 % 0 0 % 0 0 %
0,5 % 0 0 % 0 0 %
1,0 % 0 0 % 0 0 %
2,0 % 0 0 % 1 2 %
5,0 % 2 4 % 2 4 %
7,5 % 1 2 % 1 2 %

10,0 % 3 6 % 3 6 %
12,5 % 2 4 % 4 8 %
15,0 % 3 6 % 4 8 %
17,5 % 4 8 % 4 8 %
20,0 % 5 10 % 5 10 %
22,5 % 5 10 % 7 14 %
25,0 % 7 14 % 7 14 %
27,5 % 10 20 % 5 10 %

Table 6.1: Chaos Suppression through noise: Noise of the intensity σ is added to the growth
rate of the prey α (second and third column) and the mortality of the predator
m (fourth and fifth column). For each σ (different rows) fifty different realisations
of random numbers are used. Columns two and four give the absolute numbers of
random number sets for which chaos is suppressed. Columns three and five contain
the relative numbers and hence the probability of chaos suppression. The data is
visualised in figure 6.2

write and much to read. Therefore we write 10 noise for noise on the growth rate α and 01
noise for the other, respectively. In doing so, 10 noise does not mean ten noise but one zero
noise. one zero means noise on growth rate and no noise on mortality rate. Accordingly zero
one stands for no noise on growth rate and noise on mortality, one one for noise on both and
zero zero for no noise on anything. Furthermore we write the chaos suppression probabilities
as percentage numbers between 0 % and 100 % and the noise intensities as decimal numbers
between 0 and 1 for a better readability.

Now we compare our plots in figure 6.2 which represents the data of table 6.1 with the figures
4 and 5 on page 8 of Petrovskii et al. [2010].

For small noise intensities σ (σ < 0.02) the probability of chaos suppression is equal zero. This
is consistent with the results of [Petrovskii et al., 2010]. If we increase the noise intensity in our
simulation, the chaos suppression probability increases, too. For 10 noise and 01 noise each two
anomalies appear at which the suppression probability decreases unexpected: One is at σ = 0.075
in both cases, one at σ = 0.125 for 10 noise and the other one at σ = 0.275 for 01 noise. The
latter decrease of chaos suppression probability at σ = 0.275 in our simulations is similar to the
decrease in figure 5 of Petrovskii et al. [2010]. With this observation the consistency between
the two works ends. In our simulations the chaos suppression probability exceeds only in one
case a probability of 15 %. Whereas the results of [Petrovskii et al., 2010] show a strong increase
of this probability till about 75 % for 10 noise and 45 % for 01 noise each at a noise intensity
of 0.05. Moreover the results in figures 4 and 5 of Petrovskii et al. [2010] exhibit a decrease of
the chaos suppression probability, if σ increases beyond 0.05. For larger noise intensities the
probability increases again which leads to another local maximum at σ = 0.3 for 10 noise and
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at σ = 0.2 for 01 noise. 10 noise leads to a third smaller local maximum at about 0.175. These
results are contrary to our results with monotonically increasing suppression probabilities.

To sum everything up, comparing the quantitative results of [Petrovskii et al., 2010] and our
ones shows some parallels: a) no chaos suppression for low noise intensities and b) a decrease
of the chaos suppression probability for noise intensities σ larger than 0.20 on the mortality
of the predator. Clearly the differences prevail: Our chaos suppression probabilities increase
nearly monotonically and stay below 20 % whereas in [Petrovskii et al., 2010] there probabilities
fluctuate between 0 % and 75 %. One possible explanation is the small sample size of sets of
random numbers. We used 50 different sets for each σ and [Petrovskii et al., 2010] between 10
and 15. We did not check how many different sets are needed for a good statistical comparison.
Another possible explanation is that in both works different random number generators are used.
The one qualitative result is equal in Petrovskii et al. [2010] and here: Chaotic oscillations are
suppressed by noise as defined in section 5.2.
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7 Summary and Outlook

Motivated by the snowshoe hare and the Canadian lynx, we introduced a spatio-temporal
predator-prey-population model which consists of two coupled partial differential equations.
It has one non-trivial and two trivial stationary states. Regarding stability, the non-trivial one
can be saddle point, a stable knot, a stable focus, an unstable focus with a limit cycle or an
unstable knot. The stability of an unstable focus with a limit cycle is the most appropriate for
our work because the system variables oscillate. Hence we chose the pde parameter to get this
stability. Remarkable at this system is, that for a fix set of parameters only depending on the
initial conditions chaotic or non-chaotic (regular) oscillations evolve. Therefore we introduced
two sets of initial conditions which lead to chaos (set b) and regular oscillations (set a). In this
work we solved the pde system in one spatial dimension only. In principle, it can be solved in
arbitrary many dimensions.

After introducing the model theoretically we came back to reality. Real world observations of the
snowshoe hare, the Canadian lynx and other species consist of average population countings in
large spatial areas. The model produces spatial continuous populations densities. This situation
led us to the questions: How do the simulation results look like if the continuous population
densities are averaged over large spatial domains like real world observations are by nature?
Which influence do size and position of the domains have on the correlation between the average
densities in both domains?

To answer these questions we defined two spatial domains in the space and computed the average
populations densities within these domains for each time step. The results are four time series:
〈u〉1, 〈u〉2, 〈v〉1 and 〈v〉2. 〈u〉1 and 〈u〉2 are the time series of the prey population and the
domains 1 and 2. 〈v〉1 and 〈v〉2 are those of the predator population, respectively. We compared
〈u〉1 and 〈u〉2 in two ways. We plotted a 〈u〉1-〈u〉2-phase plane and discussed it and computed
the Pearson’s correlation coefficients 〈u〉c and 〈v〉c of the two time series. The following results
were obtained and presented in chapter 3: The linear correlation between 〈u〉1 and 〈u〉2 declines
if the size of the domains is increased. For large sizes a correlation is still present but it is
nonlinear. The relation between the sizes of both domains has only a small influence on 〈u〉c.
Unlike expected, 〈u〉c depends strongly on the position of the domains in space. The larger
the temporal interval for computing the correlation coefficient, the smaller the dependency on
the position. Thus this problem of the spatial dependency can be solved by simulating over
a sufficient large time interval. Especially here the influence of different initial conditions is
interesting. The results of regarding u and v are quite similar. Hence 〈v〉1 and 〈v〉2 need not to
be discussed separately. The above described qualitative results stay equal if other sets of pde
parameters are used. Therefore we limit our work to one parameter set. Finally we varied the
ratio between the diffusion coefficients of both coupled pdes and got results we did not expect.
Here we do not go into detail but recommend to regard this ratio in further works.

The above mentioned topic is important to work on but for the directly subsequent work we
recommend another focus. The five following steps should be performed next in any order:

• Vary distance between the two domains.

• Work with two spatial dimensions.

• Test further initial conditions.
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• Find another measure for comparing 〈u〉1 and 〈u〉2 instead of the correlation coefficient.

• Add noise to the system.

The first, second and third steps are self-explanatory and consist mainly of writing correct
programme code. Step four is open and deserves the study of literature. These steps were not
treated in this work and are to-dos for further works. Noise should make the regular oscillations
of the system more interesting and, above all, more realistic. We do not want chaotic oscillations
which we could already get without much effort, if we wanted to. The implementation of noise
and its application were performed in chapter 5 which we discuss now.

The first implementation of noise should be as simple as possible. We added noise to the
growth rate of the prey and the mortality rate of the predator separately. It seemed sensible
to follow Petrovskii et al. [2010] in the definition and implementation of the noise. To avoid
instability of the numerical solution the random numbers were kept constant in the whole space
and for a previously defined period of time T0. Hence, we talk of spatially homogeneous noise
of kangaroo type in time. The first result we got from the simulations with noise was, that the
length of the time step ∆t we had chosen in chapter 3 is too long. We tested different ∆t in
simulations of the model without noise and got slightly varying amplitudes and period time of
the oscillations. The system behaviour and the qualitative results in chapter 3 were not affected.
After adding the noise we had to decrease the size of the time step by one order of magnitude
to get correct results. Correct means that the results did not change anymore after decreasing
∆t further. Noise was added in simulations with two different sets of pde parameters. Using the
one parameter set the population densities became spatially homogeneous after a short period
of time. The temporal oscillation were similar to those of the model without diffusion. This
behaviour is not useful for our work and not useful in general because the spatial dimension is
redundant. Adding noise to simulations with the other parameter set leads to spatio-temporal
chaos or to spatially homogeneous oscillations. In most cases one of both system behaviours
prevails after some time but in some cases a coexistence of both behaviours exists. This system
behaviour is also not the one we wanted to achieve by adding the noise. Nevertheless, the
observations we made are interesting for other applications. In nature chaotic and more or less
regular oscillations of populations are present. Depending on place, time and species the one
or the other kind of oscillations prevails. With this information in the mind, a relative simple
system which behaviour changes between chaotic and regular behaviour is sensible to analyse
more in detail. Noise added to simulations with the two parameter sets we test and probably
other parameter sets, too, leads to no system behaviour we wanted for our further work on the
topic of chapter 3. Therefore we suggested another definition of noise in the end of chapter 5
but did not implement and test it.

In chapter 4 we varied some of the pde parameters and described and discussed the results. By
changing the mortality rate of the predator we induced chaotic oscillations without changing
the initial conditions or adding noise. The onset of chaos does not look like the normal onset
of chaos induced by appropriate initial conditions. We are not sure, whether the chaos either is
caused by numerical inaccuracy or would also be present in the analytical solution. The time
step in our simulations was as small as the one we used in chapter 5 for our simulations with
noise. Possibly ∆t has to be chosen smaller. The values of the population densities u and v are
partly near 0. If they are too small, they could be rounded to 0 or a negative number. This could
induce chaotic oscillations as well. We made a map for which parameter sets we got chaos (tab.
4.1). In further works it should be worked with these sets in order to check whether numerical
errors are present. Additionally we added a growth rate to the prey’s logistic growth term
and increased it. This lead to less regular regular oscillations. These oscillations arise at one
point and spread over the whole space. The onset looks similar to that of spatio-temporal chaos
but chaos does not start. It seems, that some single travelling waves arise and move through
the space. Dividing the initial values of the predator density v0 (x) by some factor larger than
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1 leads to qualitatively the same results. Because the variation of the initial conditions can
induce chaos, the less regular regular oscillations could be regular oscillations near the boundary
to spatio-temporal chaos. These oscillation and the used initial conditions and parameter set
should be analysed more in detail. They could be used as more realistically looking regular
oscillations for the further work on the topic of chapter 3. In the end of chapter 4 we increased
the growth rate of the prey and the mortality rate of the predator linearly in space and produced
travelling waves in doing this. During ongoing time the velocity of the waves decreases till some
critical value. A larger spatial gradient of the parameter increase leads to a faster decrease of
the wave velocity. Variations of the initial conditions affect the wave length in space and time
but do not influence the velocity of the waves. If the critical velocity is reached, oscillations,
which look like chaotic oscillations, arise at one point and spread over the whole space. The
value of the critical velocity seems to depend slightly on the spatial gradient of the parameter
increase. We are not sure, whether this dependency is either real or caused by the way and time
in and at which we compute the velocities. If the arising oscillations are chaotic ones or just
look like them, is not sure as well. Also this third part of chapter 4 is worth to be regarded
more in detail.

Finally in chapter 6 we worked with chaotic oscillations only. When spatio-temporal chaos
prevails, small areas of regular oscillations emerge, exist for some time and then fade away.
We call these areas regular islands or islands of regular oscillations. Are the islands seeds of
regular oscillations which are suppressed by spatio-temporal chaos again? We do not know.
But we counted and measured the islands. Depending on the size and time of existence from
which we regard an island as such, we got 5% to 10% coverage of the spatio-temporal plane by
these islands. This percentage is quite large and more than we expected. The countings were
performed for only one set of pde parameters and for the temporal interval [0, 10000]. In further
works the interval should be enlarged and other sets should be used. Secondly, we wanted to
reproduce the results of Petrovskii et al. [2010]. In Petrovskii et al. [2010] the suppression of
spatio-temporal chaos through noise is regarded. Here we did the same as in chapter 5 with the
difference, that we used initial conditions which cause chaotic oscillations. Adding noise leads to
the three cases: chaotic oscillations, spatial homogeneous regular oscillations and coexistence of
both. This time, we counted the cases in which finally spatial homogeneous oscillations prevail
for different intensities of noise. The qualitative result of Petrovskii et al. [2010], that chaos is
suppressed by noise in some cases, we confirmed in our work. Quantitative dependencies between
the noise intensity and the probability of chaos suppression were not reproducible. Potential
reasons for the latter result are: We used another random number generator than Petrovskii
et al. [2010]. The sample size of sets of random numbers was to small. We tested fifty different
sets for fourteen different noise intensities each. Possibly much more are needed?

The given pde system provides much potential for further work as became clear in chapters 3,
4, 5, 6 and this summary. Variations of initial and boundary conditions are nearly completely
ignored in this work. The manifold alternatives working with a system of two coupled pdes is
amazing and the logic following question is: What to do with more complex systems?
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