Datenbanksysteme SS 2007

Frank Köster (Oliver Vornberger)

Institut für Informatik Universität Osnabrück

Kapitel 11: Relationale Entwurfstheorie

Funktionale Abhängigkeiten

$$\alpha \rightarrow \beta$$

 β ist funktional abhängig von α

$$\forall r, t \in R : r.\alpha = t.\alpha \Rightarrow r.\beta = t.\beta$$

	ı	R	
Α	В	С	D
a ₄	<i>b</i> ₂	<i>C</i> ₄	d_3
a ₁	b_1	<i>C</i> ₁	d_1
a ₁	b_1	<i>c</i> ₁	d_2
a ₂	b_2	c_3	d_2
a_3	b_2	<i>C</i> ₄	d_3

Es gilt:

$$\{A\} \rightarrow \{B\}
 \{A\} \rightarrow \{C\}
 \{C, D\} \rightarrow \{B\}$$

Es gilt nicht:

$$\{B\} \rightarrow \{C\}.$$

Naiver Test auf Abhängigkeit

Beachte: Informationen aus Domäne berücksichtigen!

- 1.) Sortiere R nach α -Werten
- 2.) Teste, ob bei gleichen α auch gleiche β vorliegen

Vereinbarung zu Schreibweisen

statt $\{C, D\} \rightarrow \{B\}$ schreiben wir $CD \rightarrow B$

 $\begin{array}{ll} \text{statt} & \alpha \cup \beta \\ \text{schreiben wir} & \alpha\beta \end{array}$

Schlüssel

In dem Relationenschema \mathcal{R} ist $\alpha \subseteq \mathcal{R}$ ein *Superschlüssel* falls gilt $\alpha \to \mathcal{R}$

 β ist *voll funktional abhängig* von α , falls gilt $\alpha \rightarrow \beta$

$$\forall A \in \alpha : \alpha - \{A\} \not\rightarrow \beta$$

 $\alpha \subseteq \mathcal{R}$ heißt *Schlüsselkandidat* falls gilt

 ${\cal R}$ ist voll funktional abhängig von ${lpha}$

Primärschlüssel = einer der Schlüsselkandidaten

Relation Städte

Name	Bland	Vorwahl	EW
Frankfurt	Hessen	069	650000
Frankfurt	Brandenburg	0335	84000
München	Bayern	089	1200000
Passau	Bayern	0851	50000

Wie lauten in diesem Beispiel die Schlüsselkandidaten?

Schlüsselkandidaten:

{Name, BLand}

{Name, Vorwahl}

Relation ProfessorenAdr

```
ProfessorenAdr: { PersNr, Name, Rang, Raum, Ort, Straße, PLZ,
                  Vorwahl, BLand, Landesregierung ]}
Funktionale Abhängigkeiten:
           → { PersNr, Name, Rang, Raum, Ort, Straße, PLZ,
 {PersNr}
                      Vorwahl, BLand, EW, Landesregierung }
 \{Ort, BLand\} \rightarrow \{Vorwahl\}
 {PLZ}
         → { BLand, Ort }
 \{Ort, BLand, Straße\} \rightarrow \{PLZ\}
 {BLand} → { Landesregierung }
         \rightarrow { PersNr }
 {Raum}
davon abgeleitet:
                  → { PersNr, Name, Rang, Raum, Ort, Straße,
 {Raum}
                      PLZ, Vorwahl, BLand, Landesregierung }
                  → { Landesregierung }
 {PLZ}
```

Hülle von F

Gegeben:

Menge von funktionalen Abhängigkeiten F

Gesucht:

F⁺ := Menge der aus F ableitbaren Abhängigkeiten

Armstrong Axiome

• Reflexivität: Aus $\beta \subseteq \alpha$ folgt: $\alpha \to \beta$

• Verstärkung: Aus $\alpha \to \beta$ folgt: $\alpha \gamma \to \beta \gamma$ für $\gamma \subseteq U$

• Transitivität: Aus $\alpha \rightarrow \beta$

und $\beta \rightarrow \gamma$ folgt: $\alpha \rightarrow \gamma$

Die Armstrong-Axiome sind

- sound (korrekt)
- complete (vollständig)

Weitere Axiome

• Vereinigung: aus $\alpha \rightarrow \beta$

und $\alpha \rightarrow \gamma$

folgt: $\alpha \rightarrow \beta \gamma$

• Dekomposition: aus $\alpha \rightarrow \beta \gamma$

folgt: $\alpha \rightarrow \beta$

und $\alpha \rightarrow \gamma$

• Pseudotransitivität: aus $\alpha \rightarrow \beta$

und $\gamma\beta \rightarrow \delta$

folgt: $\alpha \gamma \rightarrow \delta$

Beispielanwendung der Armstrong-Axiome

```
{PersNr}
                     → { PersNr,Name,Rang,Raum,Ort,Straße,
                          PLZ, Vorwahl, BL and, EW, Landesregierung }
\{Ort, BLand\} \rightarrow \{Vorwahl\}
                  \rightarrow { BLand, Ort }
{PLZ}
\{Ort, BLand, Straße\} \rightarrow \{PLZ\}
{BLand}
                     → { Landesregierung }
{Raum}
                     → { PersNr }
abzuleiten: {PLZ} → { Landesregierung }
                                      (Dekomposition von FD Nr. 3)
\{PLZ\} \rightarrow \{BLand\}
{BLand} → {Landesregierung}
                                      (als FD Nr. 5 gegeben)
                                      (ergibt sich durch Transitivität)
{PLZ} → {Landesregierung}
```

Wunsch: alle Abhängigkeiten erfahren

Gegeben: Menge von funktionalen Abhängigkeiten F

Gesucht: F^+ := Menge der aus F ableitbaren

Abhängigkeiten

Aber: F^+ kann auch bei kleinem F recht groß

werden!

Abschluss einer Attribut-Menge

$$\alpha^+ := \{ \beta \subseteq U \mid \alpha \rightarrow \beta \in F^+ \}$$

Satz:

 $\alpha \rightarrow \beta$ folgt aus Armstrongaxiomen $\iff \beta \in \alpha^+$.

Algorithmus zur Bestimmung von α^+ :

$$X^0 := \alpha$$

$$X^{i+1} := X^i \cup \gamma$$
 falls $\beta \rightarrow \gamma \in F \land \beta \subseteq X^i$

Abbruch, falls keine Veränderung mehr beobachtbar ist (d.h. $X^{i+1} = X^{i}$)

Beispiel für Abschluss einer Attributmenge

```
Sei U = \{A, B, C, D, E, G\}
Sei F = \{AB \rightarrow C, C \rightarrow A, BC \rightarrow D, ACD \rightarrow B,
                    D \rightarrow EG, BE \rightarrow C, CG \rightarrow BD, CE \rightarrow AG
Sei
      \alpha = \{B, D\}
      X^0 = BD
      X^1 = BDEG
      X^2 = BCDEG
      X^3 = ABCDEG
      X 4
               = ABCDEG
                ⇒ Abbruch
Also: \alpha^+ = ABCDEG
```

Äquivalenz von funktionalen Abhängigkeiten

$$F \equiv G \Leftrightarrow F^+ \equiv G^+$$

Algorithmus:

Teste für jede Abhängigkeit $\alpha \rightarrow \beta \in F$, ob gilt:

$$\alpha \rightarrow \beta \in G^+$$
, d. h. $\beta \subseteq \alpha^+$.

Teste für jede Abhängigkeit $\gamma \rightarrow \delta \in G$, ob gilt:

$$\gamma \rightarrow \delta \in F^+$$
, d. h. $\delta \subseteq \gamma^+$.

Minimale Menge von funktionalen Abhängigkeiten

- Jede rechte Seite hat nur ein Attribut.
- Weglassen einer Abhängigkeit aus F verändert F⁺.
- Weglassen eines Attributs in der linken Seite verändert F⁺.

Algorithmus:

- Aufsplitten der rechten Seiten.
- Probeweises Entfernen von Regeln bzw. von Attributen auf der linken Seite.

Beispiel für Äquivalenz

 $U = \{A, B, C, D, E, G\}$ Aufspalten der rechten Seiten:

Entfernen von Redundanz

```
AB
                      CE \rightarrow A ist redundant wegen
C \rightarrow A
                      C \rightarrow A
BC \rightarrow D
ACD
                      CG \rightarrow B ist redundant wegen
                      CG \rightarrow D
                      C \rightarrow A
BE
                      ACD \rightarrow B
CG \rightarrow B
CG \rightarrow D
                      ACD → B kann gekürzt werden zu
CE \rightarrow A
                      CD \rightarrow B wegen
CE
```

Schlechte Relationenschemata

<u>PersNr</u>	Name	Rang	Raum	<u>VorlNr</u>	Titel	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäutik	2
2125	Sokrates	C4	226	4052	Logik	4
2132	Popper	C3	52	5259	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die 3 Kritiken	4

- Update-Anomalie Angaben zu Professor mehrfach gespeichert
- Insert Anomalie Professor nur mit Vorlesung einfügen
- Delete-Anomalie Entfernen von Vorlesung entfernt Professor

Normalisierung

Zerlegung eines Schemas Rin Schemata R_1 , R_2 , ... R_n mit

Verlustlosigkeit:

Die in der ursprünglichen Ausprägung R des Schemas R enthaltenen Informationen müssen aus den Ausprägungen R_1, \ldots, R_n der neuen Schemata $R_1, R_2, \ldots R_n$ rekonstruierbar sein.

Abhängigkeitserhaltung:

Die für \mathcal{R} geltenden funktionalen Abhängigkeiten müssen auf die $\mathcal{R}_1, \ldots, \mathcal{R}_n$ übertragbar sein.

Zerlegung in zwei Relationenschemata

$$\mathcal{R}$$
= $\mathcal{R}_1 \cup \mathcal{R}_2$

$$R_1 := \prod_{\mathcal{R}_1} (R)$$

$$R_2 := \prod_{\mathcal{R}_2} (R)$$

Eine Zerlegung von \mathcal{R} in \mathcal{R}_1 und \mathcal{R}_2 heißt *verlustlos*, falls für jede gültige Ausprägung R von \mathcal{R} gilt:

$$R = R_1 \triangleright \triangleleft R_2$$

Relation Biertrinker

Biertrinker

Kneipe	Gast	Bier
Stiefel	Wacker	Pils
Stiefel	Sorglos	Hefeweizen
Zwiebel	Wacker	Hefeweizen

Besucht

Kneipe	Gast
Stiefel	Wacker
Stiefel	Sorglos
Zwiebel	Wacker

Gast	Bier
Wacker	Pils
Sorglos	Hefeweizen
Wacker	Hefeweizen

Trinkt

Kneipe	Gast	Pils
Stiefel	Wacker	Pils
Stiefel	Wacker	Hefeweizen
Stiefel	Sorglos	Hefeweizen
Zwiebel	Wacker	Pils
Zwiebel	Wacker	Hefeweizen

⇒ Nicht verlustlos!

Abhängigkeitsbewahrend

Zerlegung von \mathcal{R} in \mathcal{R}_1 , \mathcal{R}_2 , ... \mathcal{R}_n heißt abhängigkeitsbewahrend (hüllentreu) falls gilt

$$F_{\mathcal{R}} \equiv (F_{\mathcal{R}_1} \cup \ldots \cup F_{\mathcal{R}_n})$$
 bzw.

$$F^+_{\mathcal{R}} = (F_{\mathcal{R}_1} \cup \ldots \cup F_{\mathcal{R}_n})^+$$

Relation PLZvereichnis

Ort	BLand	Straße	PLZ
Frankfurt	Hessen	Goethestraße	60313
Frankfurt	Hessen	Galgenstraße	60437
Frankfurt	Brandenburg	Goethestraße	15234

PLZverzeichnis
{PLZ} → {Ort, BLand}
{Ort, BLand, Straße}

 \rightarrow {PLZ}

Orte

Straßen

PLZ	Straßen
15234	Goethestraße
60313	Goethestraße
60437	Galgenstraße
15235	Goethestraße

Ort	BLand	PLZ
Frankfurt	Hessen	60313
Frankfurt	Hessen	60437
Frankfurt	Brandenburg	15234
Frankfurt	Brandenburg	15235

verlustlos, da PLZ einziges gemeinsames Attribut und $\{PLZ\} \rightarrow \{Ort, BLand\}$ nicht abhängigkeitserhaltend: wg. $\{Ort, BLand, Straße, \} \rightarrow \{PLZ\}$ Problem: Einfügen ok. Nach Join Problem wg. $\{Ort, BLand, Straße\} \rightarrow \{PLZ\}$

Erste Normalform (1NF)

Unzulässig sind mengenwertige Attribute:

Vater	Mutter	Kinder
Johann	Martha	{Else, Lucia}
Johann	Maria	{Theo, Josef}
Heinz	Martha	{Cleo}

Verlangt werden atomare Attribute:

Vater	Mutter	Kind
Johann	Martha	Else
Johann	Martha	Lucia
Johann	Maria	Theo
Johann	Maria	Josef
Heinz	Martha	Cleo

Zweite Normalform (2NF)

Ein Attribut heißt *Primärattribut*, wenn es in mindestens einem Schlüsselkandidaten vorkommt, andernfalls heißt es *Nichtprimärattribut*.

Ein Relationenschema R ist in zweiter Normalform falls gilt:

- R ist in der ersten Normalform
- Jedes Nichtprimärattribut $A \in \mathcal{R}$ ist voll funktional abhängig von jedem Schlüsselkandidaten.

Relation Studentenbelegung

Studentenbelegung

MatrNr	VorlNr	Name	Semester
26120	5001	Fichte	10
27550	5001	Schopenhauer	6
27550	4052	Schopenhauer	6
28106	5041	Carnap	3
28106	5052	Carnap	3
28106	5216	Carnap	3
28106	5259	Carnap	3

Schlüsselkandiaten:

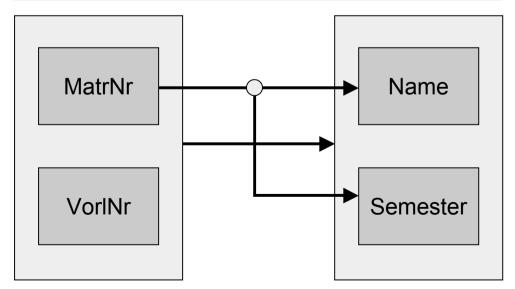
{MatrNr, VorlNr}

Nichtprimärattribute:

{Name, Semester}

Name ist nicht voll funktional abhängig von {MatrNr, VorlNr}

⇒ keine 2. Normalform



Relation Hörsaal

Hörsaal

Vorlesung	Dozent	Termin	Raum
Backen ohne Fett	Kant	Mo, 10:15	32/102
Selber Atmen	Sokrates	Mo, 14:15	31/449
Selber Atmen	Sokrates	Di, 14:15	31/449
Schneller Beten	Sokrates	Fr, 10:15	31/449

Schlüsselkandidaten:

{Vorlesung, Termin}

{Dozent, Termin}

{Raum, Termin}

Es gibt keine Nichtprimärattribute

 \Rightarrow 2. Normalform

Relation Student

Student

MatrNr	Name	Fachbereich	Dekan
29555	Feuerbach	6	Matthies
27550	Schopenhauer	6	Matthies
26120	Fichte	4	Kapphan
25403	Jonas	6	Matthies
28106	Carnap	7	Weingarten

Student in zweiter Normalform

aber

Abhängigkeiten zwischen den Nichtprimärattributen,
 z.B. hängt Dekan von Fachbereich ab.

Transitive Abhängigkeit

Gegeben Attributmenge *U* mit Teilmengen *X,Y,Z Z* heißt transitiv abhängig *von X*, falls gilt

$$X \cap Z = \emptyset$$

 $\exists Y \subset U : X \cap Y = \emptyset, Y \cap Z = \emptyset$
 $X \rightarrow Y \rightarrow Z, Y \rightarrow X$

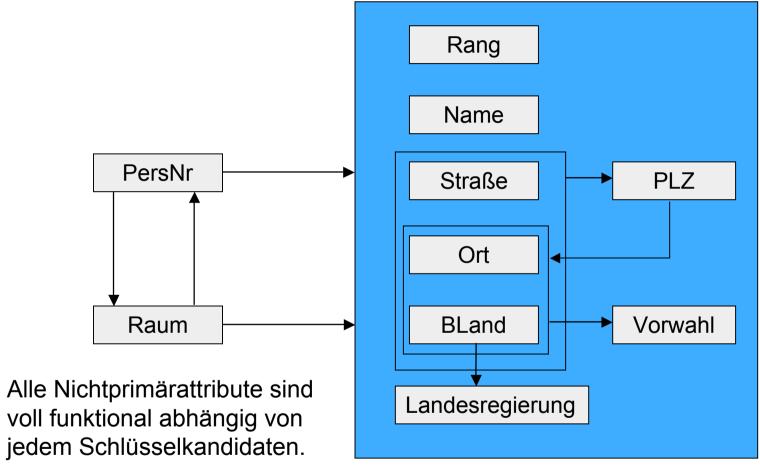
Beispiel:

MatrNr → Fachbereich → Dekan

Dritte Normalform (3NF)

- R ist in dritter Normalform
- \mathcal{R} ist in zweiter Normalform
- Jedes Nichtprimärattribut ist nicht-transitiv abhängig von jedem Schlüsselkandidaten.

Relation ProfessorenAdr



 \Rightarrow 2 . Normalform

 $PersNr \xrightarrow{\checkmark} \{Ort, BLand\} \rightarrow Vorwahl \Rightarrow nicht in 3. Normalform$

Boyce Codd Normalform

 $\mathcal R$ ist in Boyce Codd Normalform (BCNF): Für jede funktionale Abhängigkeit $\alpha \to \beta$ gilt

- $\beta \subseteq \alpha$ (d.h. trivial) oder
- lpha ist Superschlüssel von R

Relation Städte

Städte

Ort	BLand	Ministerpräsident	EW
Frankfurt	Hessen	Koch	660.000
Frankfurt	Brandenburg	Platzek	70.000
Bonn	NRW	Steinbrück	300.000
Lotte	NRW	Steinbrück	14.000

Abhängigkeiten: {Ort, BLand} → {EW}

{BLand} → {Ministerpräsident}

{Ministerpräsident} → {Bland}

Schlüsselkandidaten: {Ort, BLand}

{Ort, Ministerpräsident}

EW ist nicht-transitiv abhängig von Schlüsselkandidaten

 \Rightarrow 3. Normalform

{Ministerpräsident} kein Superschlüssel ⇒ nicht BCNF

Ende von Kapitel 11: Relationale Entwurfstheorie