Kapitel 11

Relationale Entwurfstheorie

11.1 Funktionale Abhängigkeiten

Gegeben sei ein Relationenschema \mathcal{R} mit einer Ausprägung R. Eine *funktionale Abhängigkeit* (engl. *functional dependency*) stellt eine Bedingung an die möglichen gültigen Ausprägungen des Datenbankschemas dar. Eine funktionale Abhängigkeit, oft abgekürzt als FD, wird dargestellt als

$$\alpha \to \beta$$

Die griechischen Buchstaben α und β repräsentieren Mengen von Attributen. Es sind nur solche Ausprägungen zulässig, für die gilt:

$$\forall r, t \in R : r.\alpha = t.\alpha \Rightarrow r.\beta = t.\beta$$

D. h., wenn zwei Tupel gleiche Werte für alle Attribute in α haben, dann müssen auch ihre β -Werte übereinstimmen. Anders ausgedrückt: Die α -Werte bestimmen eindeutig die β -Werte; die β -Werte sind funktional abhängig von den α -Werten.

Die nächste Tabelle zeigt ein Relationenschema \mathcal{R} über der Attributmenge $\{A, B, C, D\}$.

R			
A	В	C	D
a_4	b_2	c_4	d_3
a_1	b_1	c_1	d_1
a_1	b_1	c_1	d_2
a_2	b_2	c_3	d_2
a_3	b_2	c_4	d_3

Aus der momentanen Ausprägung lassen sich z. B. die funktionalen Abhängigkeiten $\{A\} \to \{B\}, \{A\} \to \{C\}, \{C, D\} \to \{B\}$ erkennen, hingegen gilt nicht $\{B\} \to \{C\}$.

Ob diese Abhängigkeiten vom Designer der Relation als semantische Konsistenzbedingung verlangt wurden, läßt sich durch Inspektion der Tabelle allerdings nicht feststellen.

Statt $\{C, D\} \to \{B\}$ schreiben wir auch $CD \to B$. Statt $\alpha \cup \beta$ schreiben wir auch $\alpha\beta$.

Ein einfacher Algorithmus zum Überprüfen einer (vermuteten) funktionalen Abhängigkeit $\alpha \to \beta$ in der Relation R lautet:

- 1. sortiere R nach α -Werten
- 2. falls alle Gruppen bestehend aus Tupeln mit gleichen α -Werten auch gleiche β -Werte aufweisen, dann gilt $\alpha \to \beta$, sonst nicht.

11.2 Schlüssel

In dem Relationenschema \mathcal{R} ist $\alpha \subseteq \mathcal{R}$ ein *Superschlüssel*, falls gilt

$$\alpha \to \mathcal{R}$$

Der Begriff Superschlüssel besagt, daß alle Attribute von α abhängen aber noch nichts darüber bekannt ist, ob α eine minimale Menge von Attributen enthält.

Wir sagen: β ist voll funktional abhängig von α , in Zeichen $\alpha \rightarrow \beta$, falls gilt

1. $\alpha \rightarrow \beta$

2.
$$\forall A \in \alpha : \alpha - \{A\} \not\rightarrow \beta$$

In diesem Falle heißt α Schlüsselkandidat. Einer der Schlüsselkandidaten wird als Primärschlüssel ausgezeichnet.

Folgende Tabelle zeigt die Relation Städte:

Städte				
Name	BLand	Vorwahl	EW	
Frankfurt	Hessen	069	650000	
Frankfurt	Brandenburg	0335	84000	
München	Bayern	089	1200000	
Passau	Bayern	0851	50000	

Offenbar gibt es zwei Schlüsselkandidaten:

- 1. {Name, BLand}
- 2. {Name, Vorwahl}

11.3 Bestimmung funktionaler Abhängigkeiten

Wir betrachten folgendes Relationenschema:

```
ProfessorenAdr: {[PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, BLand, Landesregierung]}
```

Hierbei sei *Ort* der eindeutige Erstwohnsitz des Professors, die *Landesregierung* sei die eindeutige Partei des Ministerpräsidenten, *BLand* sei der Name des Bundeslandes, eine Postleitzahl (*PLZ*) ändere sich nicht innerhalb einer Straße, Städte und Straßen gehen nicht über Bundesgrenzen hinweg.

Folgende Abhängigkeiten gelten:

```
 {PersNr}
 → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, BLand, EW, Landesregierung}
 {Ort, BLand}
 → {Vorwahl}
 {PLZ}
 → {BLand, Ort}
 {Ort, BLand, Straße}
 → {PLZ}
 {BLand}
 → {Landesregierung}
 {Raum}
 → {PersNr}
```

Hieraus können weitere Abhängigkeiten abgeleitet werden:

```
 7. {Raum} → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, BLand, Landesregierung}
 8. {PLZ} → {Landesregierung}
```

Bei einer gegebenen Menge F von funktionalen Abhängigkeiten über der Attributmenge U interessiert uns die Menge F^+ aller aus F ableitbaren funktionalen Abhängigkeiten, auch genannt die $H\ddot{u}lle$ (engl. closure) von F.

Zur Bestimmung der Hülle reichen folgende Inferenzregeln, genannt Armstrong Axiome, aus:

```
• Reflexivität: Aus \beta \subseteq \alpha folgt: \alpha \to \beta
```

- Verstärkung: Aus $\alpha \to \beta$ folgt: $\alpha \gamma \to \beta \gamma$ für $\gamma \subseteq U$
- Transitivität: Aus $\alpha \to \beta$ und $\beta \to \gamma$ folgt: $\alpha \to \gamma$

Die Armstrong-Axiome sind sound (korrekt) und complete (vollständig). Korrekt bedeutet, daß nur solche FDs abgeleitet werden, die von jeder Ausprägung erfüllt sind, für die F erfüllt ist. Vollständig bedeutet, daß sich alle Abhängigkeiten ableiten lassen, die durch F logisch impliziert werden.

Weitere Axiome lassen sich ableiten:

- Vereinigung: Aus $\alpha \to \beta$ und $\alpha \to \gamma$ folgt: $\alpha \to \beta \gamma$
- Dekomposition: Aus $\alpha \to \beta \gamma$ folgt: $\alpha \to \beta$ und $\alpha \to \gamma$
- Pseudotransitivität: Aus $\alpha \to \beta$ und $\gamma\beta \to \delta$ folgt $\alpha\gamma \to \delta$

Wir wollen zeigen: $\{PLZ\} \rightarrow \{Landesregierung\}$ läßt sich aus den FDs 1-6 für das Relationenschema ProfessorenAdr herleiten:

- {PLZ} → {BLand} (Dekomposition von FD Nr.3)
- {BLand} → {Landesregierung} (FD Nr.5)
- {PLZ} → {Landesregierung} (Transitivität)

Oft ist man an der Menge von Attributen α^+ interessiert, die von α gemäß der Menge F von FDs funktional bestimmt werden:

$$\alpha^+ := \{ \beta \subseteq U \mid \alpha \to \beta \in F^+ \}$$

Es gilt der Satz:

 $\alpha \to \beta$ folgt aus Armstrongaxiomen genau dann wenn $\beta \in \alpha^+$.

Die Menge α^+ kann aus einer Menge F von FDs und einer Menge von Attributen α wie folgt bestimmt werden:

$$X^0 := \alpha$$

$$X^{i+1} := X^i \cup \gamma \ falls \ \beta \to \gamma \in F \wedge \beta \subseteq X^i$$

D. h. von einer Abhängigkeit $\beta \to \gamma$, deren linke Seite schon in der Lösungsmenge enthalten ist, wird die rechte Seite hinzugefügt. Der Algorithmus wird beendet, wenn keine Veränderung mehr zu erzielen ist, d. h. wenn gilt: $X^{i+1} = X^i$.

Beispiel:

$$\begin{array}{lll} \text{Sei} & U & = & \{A,B,C,D,E,G\} \\ \text{Sei} & F & = & \{AB \rightarrow C,C \rightarrow A,BC \rightarrow D,ACD \rightarrow B,\\ & & D \rightarrow EG,BE \rightarrow C,CG \rightarrow BD,CE \rightarrow AG\} \\ \text{Sei} & X & = & \{B,D\} \\ & X^0 & = & BD \\ & X^1 & = & BDEG \\ & X^2 & = & BCDEG \\ & X^3 & = & ABCDEG = X^4, \text{Abbruch.} \\ \text{Also:} & (BD)^+ & = & ABCDEG \end{array}$$

Zwei Mengen F und G von funktionalen Abhängigkeiten heißen genau dann äquivalent (in Zeichen $F \equiv G$), wenn ihre Hüllen gleich sind:

$$F \equiv G \Leftrightarrow F^+ = G^+$$

Zum Testen, ob $F^+ = G^+$, muß für jede Abhängigkeit $\alpha \to \beta \in F$ überprüft werden, ob gilt: $\alpha \to \beta \in G^+$, d. h. $\beta \subseteq \alpha^+$. Analog muß für die Abhängigkeiten $\gamma \to \delta \in G$ verfahren werden.

Zu einer gegebenen Menge F von FDs interessiert oft eine kleinstmögliche äquivalente Menge von FDs.

Eine Menge von funktionalen Abhängigkeiten heißt minimal ⇔

- 1. Jede rechte Seite hat nur ein Attribut.
- 2. Weglassen einer Abhängigkeit aus F verändert F^+ .
- 3. Weglassen eines Attributs in der linken Seite verändert F^+ .

Konstruktion der minimalen Abhängigkeitsmenge geschieht durch Aufsplitten der rechten Seiten und durch probeweises Entfernen von Regeln bzw. von Attributen auf der linken Seite.

Beispiel:

Aufspalten der rechten Seiten liefert

$$\begin{array}{cccc} AB & \rightarrow & C \\ C & \rightarrow & A \\ BC & \rightarrow & D \\ ACD & \rightarrow & B \\ D & \rightarrow & E \\ D & \rightarrow & G \\ BE & \rightarrow & C \\ CG & \rightarrow & B \\ CG & \rightarrow & D \\ CE & \rightarrow & A \\ CE & \rightarrow & G \\ \end{array}$$

11.4 Schlechte Relationenschemata

Als Beispiel für einen schlechten Entwurf zeigen wir die Relation ProfVorl:

ProfVorl						
PersNr	Name	Rang	Raum	VorlNr	Titel	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäutik	2
2125	Sokrates	C4	226	4052	Logik	4
2132	Popper	C3	52	5259	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die 3 Kritiken	4

Folgende Anomalien treten auf:

- Update-Anomalie:
 Angaben zu den Räumen eines Professors müssen mehrfach gehalten werden.
- Insert-Anomalie:
 Ein Professor kann nur mit Vorlesung eingetragen werden (oder es entstehen NULL-Werte).
- Delete-Anomalie:
 Das Entfernen der letzten Vorlesung eines Professors entfernt auch den Professor (oder es müssen NULL-Werte gesetzt werden).

11.5 Zerlegung von Relationen

Unter *Normalisierung* verstehen wir die Zerlegung eines Relationenschemas \mathcal{R} in die Relationenschemata $\mathcal{R}_1, \mathcal{R}_2, \dots \mathcal{R}_n$, die jeweils nur eine Teilmenge der Attribute von \mathcal{R} aufweisen, d. h. $\mathcal{R}_i \subseteq \mathcal{R}$. Verlangt werden hierbei

- Verlustlosigkeit: Die in der ursprünglichen Ausprägung R des Schemas \mathcal{R} enthaltenen Informationen müssen aus den Ausprägungen R_1, \ldots, R_n der neuen Schemata $\mathcal{R}_1, \mathcal{R}_2, \ldots \mathcal{R}_n$ rekonstruierbar sein.
- Abhängigkeitserhaltung: Die für \mathcal{R} geltenden funktionalen Abhängigkeiten müssen auf die Schemata $\mathcal{R}_1, \dots, \mathcal{R}_n$ übertragbar sein.

Wir betrachten die Zerlegung in zwei Relationenschemata. Dafür muß gelten $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$. Für eine Ausprägung R von \mathcal{R} definieren wir die Ausprägung R_1 von \mathcal{R}_1 und R_2 von \mathcal{R}_2 wie folgt:

$$R_1 := \Pi_{\mathcal{R}_1}(R)$$

$$R_2 := \Pi_{\mathcal{R}_2}(R)$$

Eine Zerlegung von \mathcal{R} in \mathcal{R}_1 und \mathcal{R}_2 heißt *verlustlos*, falls für jede gültige Ausprägung R von \mathcal{R} gilt:

$$R = R_1 \bowtie R_2$$

Es folgt eine Relation *Biertrinker*, die in zwei Tabellen zerlegt wurde. Der aus den Zerlegungen gebildete natürliche Verbund weicht vom Original ab. Die zusätzlichen Tupel (kursiv gesetzt) verursachen einen Informationsverlust.

Biertrinker			
Kneipe Gast Bier			
Stiefel Wacker Pils			
Stiefel	Sorglos	rglos Hefeweizen	
Zwiebel Wacker Hefeweizer		Hefeweizen	

Besucht		
Kneipe Gast		
Stiefel	Wacker	
Stiefel	Sorglos	
Zwiebel	Wacker	

Trinkt		
Gast Bier		
Wacker Pils		
Sorglos Hefeweizen		
Wacker Hefeweizen		

Besucht ⋈ Trinkt			
Kneipe Gast		Pils	
Stiefel	Wacker	Pils	
Stiefel	Wacker	Hefeweizen	
Stiefel	Sorglos	Hefeweizen	
Zwiebel	Wacker	Pils	
Zwiebel	Wacker	Hefeweizen	

Eine Zerlegung von \mathcal{R} in $\mathcal{R}_1, \ldots, \mathcal{R}_n$ heißt abhängigkeitsbewahrend (auch genannt $h\ddot{u}llentreu$) falls die Menge der ursprünglichen funktionalen Abhängigkeiten äquivalent ist zur Vereinigung der funktionalen Abhängigkeiten jeweils eingeschränkt auf eine Zerlegungsrelation, d. h.

- $F_{\mathcal{R}} \equiv (F_{\mathcal{R}_1} \cup \ldots \cup F_{\mathcal{R}_n})$ bzw.
- $F_{\mathcal{R}}^+ = (F_{\mathcal{R}_1} \cup \ldots \cup F_{\mathcal{R}_n})^+$

Es folgt eine Relation *PLZverzeichnis*, die in zwei Tabellen zerlegt wurde. Fettgedruckt sind die jeweiligen Schlüssel.

PLZverzeichnis			
Ort	BLand	Straße	PLZ
Frankfurt	Hessen	Goethestraße	60313
Frankfurt	Hessen	Galgenstraße	60437
Frankfurt	Brandenburg	Goethestraße	15234

Straßen		
PLZ	Straße	
15234	Goethestraße	
60313	Goethestraße	
60437	Galgenstraße	

Orte			
Ort	BLand	PLZ	
Frankfurt	Hessen	60313	
Frankfurt	Hessen	60437	
Frankfurt	Brandenburg	15234	

Es sollen die folgenden funktionalen Abhängigkeiten gelten:

- $\{PLZ\} \rightarrow \{Ort, BLand\}$
- $\{Straße, Ort, BLand\} \rightarrow \{PLZ\}$

Die Zerlegung ist verlustlos, da PLZ das einzige gemeinsame Attribut ist und $\{PLZ\} \rightarrow \{Ort, BLand\}$ gilt.

Die funktionale Abhängigkeit {Straße, Ort, BLand} \rightarrow {PLZ} ist jedoch keiner der beiden Relationen zuzuordnen, so daß diese Zerlegung nicht abhängigkeitserhaltend ist.

Folgende Auswirkung ergibt sich: Der Schlüssel von *Straßen* ist {PLZ, Straße} und erlaubt das Hinzufügen des Tupels [15235, Goethestraße].

Der Schlüssel von Orte ist {PLZ} und erlaubt das Hinzufügen des Tupels [Frankfurt, Brandenburg, 15235]. Beide Relationen sind lokal konsistent, aber nach einem Join wird die Verletzung der Bedingung {Straße, Ort, BLand} \rightarrow {PLZ} entdeckt.

11.6 Erste Normalform

Ein Relationenschema \mathcal{R} ist in erster Normalform, wenn alle Attribute atomare Wertebereiche haben. Verboten sind daher zusammengesetzte oder mengenwertige Domänen.

Zum Beispiel müßte die Relation

Eltern			
Vater Mutter Kinder			
Johann	Martha	{Else, Lucia}	
Johann	Maria	{Theo, Josef}	
Heinz	Martha	{Cleo}	

"flachgeklopft" werden zur Relation

	Eltern	
Vater	Mutter	Kind
Johann	Martha	Else
Johann	Martha	Lucia
Johann	Maria	Theo
Johann	Maria	Josef
Heinz	Martha	Cleo

11.7 Zweite Normalform

Ein Attribut heißt Primärattribut, wenn es in mindestens einem Schlüsselkandidaten vorkommt, andernfalls heißt es Nichtprimärattribut.

Ein Relationenschema \mathcal{R} ist in zweiter Normalform falls gilt:

- R ist in der ersten Normalform
- ullet Jedes Nichtprimär-Attribut $A \in \mathcal{R}$ ist voll funktional abhängig von jedem Schlüsselkandidaten.

Seien also $\kappa_1, \ldots, \kappa_n$ die Schlüsselkandidaten in einer Menge F von FDs. Sei $A \in \mathcal{R} - (\kappa_1 \cup \ldots \cup \kappa_n)$ ein $Nichtprim \ddot{a}rattribut$. Dann muß für $1 \leq j \leq n$ gelten:

$$\kappa_i \to A \in F^+$$

Folgende Tabelle verletzt offenbar diese Bedingung:

StudentenBelegung					
MatrNr	VorlNr	Name	Semester		
26120	5001	Fichte	10		
27550	5001	Schopenhauer	6		
27550	4052	Schopenhauer	6		
28106	5041	Carnap	3		
28106	5052	Carnap	3		
28106	5216	Carnap	3		
28106	5259	Carnap	3		
		• • •			

Abbildung 11.1 zeigt die funktionalen Abhängigkeiten der Relation *StudentenBelegung*. Offenbar ist diese Relation nicht in der zweiten Normalform, denn *Name* ist nicht voll funktional abhängig vom Schlüsselkandidaten {*MatrNr*, *VorlNr*}, weil der Name alleine von der Matrikelnummer abhängt.

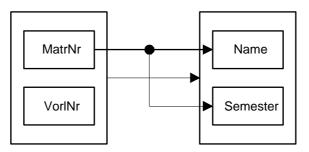


Abbildung 11.1: Graphische Darstellung der funktionalen Abhängigkeiten von StudentenBelegung

Als weiteres Beispiel betrachten wir die Relation

Hörsaal: { [Vorlesung, Dozent, Termin, Raum] }

Eine mögliche Ausprägung könnte sein:

Vorlesung	Dozent	Termin	Raum
Backen ohne Fett	Kant	Mo, 10:15	32/102
Selber Atmen	Sokrates	Mo, 14:15	31/449
Selber Atmen	Sokrates	Di, 14:15	31/449
Schneller Beten	Sokrates	Fr, 10:15	31/449

Die Schlüsselkandidaten lauten:

- {Vorlesung, Termin}
- {Dozent, Termin}
- {Raum, Termin}

Alle Attribute kommen in mindestens einem Schlüsselkandidaten vor. Also gibt es keine Nichtprimärattribute, also ist die Relation in zweiter Normalform.

11.8 Dritte Normalform

Wir betrachten die Relation

Student : {[MatrNr, Name, Fachbereich, Dekan]}

Eine mögliche Ausprägung könnte sein:

MatrNr	Name	Fachbereich	Dekan
29555	Feuerbach	6	Matthies
27550	Schopenhauer	6	Matthies
26120	Fichte	4	Kapphan
25403	Jonas	6	Matthies
28106	Carnap	7	Weingarten

Offenbar ist *Student* in der zweiten Normalform, denn die Nichtprimärattribute *Name*, *Fachbereich* und *Dekan* hängen voll funktional vom einzigen Schlüsselkandidat *MatrNr* ab.

Allerdings bestehen unschöne Abhängigkeiten zwischen den Nichtprimärattributen, z. B. hängt *Dekan* vom *Fachbereich* ab. Dies bedeutet, daß bei einem Dekanswechsel mehrere Tupel geändert werden müssen.

Seien X,Y,Z Mengen von Attributen eines Relationenschemas $\mathcal R$ mit Attributmenge U. Z heißt transitiv abhängig von X, falls gilt

$$\begin{array}{c} X\cap Z=\emptyset\\ \exists\,Y\subset U:X\cap Y=\emptyset,Y\cap Z=\emptyset\\ X\to Y\to Z,Y\not\to X \end{array}$$

Zum Beispiel ist in der Relation Student das Attribut Dekan transitiv abhängig von MatrNr:

$$MatrNr \xrightarrow{\leftarrow} Fachbereich \rightarrow Dekan$$

Ein Relationenschema \mathcal{R} ist in dritter Normalform falls gilt

- R ist in zweiter Normalform
- Jedes Nichtprimärattribut ist nicht-transitiv abhängig von jedem Schlüsselkandidaten.

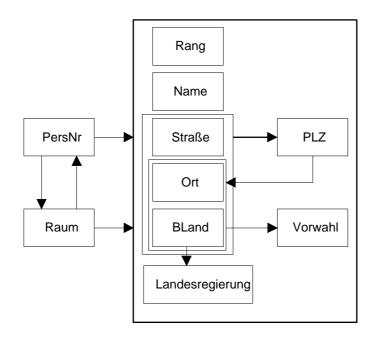


Abbildung 11.2: Graphische Darstellung der funktionalen Abhängigkeiten von ProfessorenAdr

Als Beispiel betrachten wir die bereits bekannte Relation

ProfessorenAdr : {[PersNr, Name, Rang, Raum, Ort, Straße PLZ, Vorwahl, BLand, Landesregierung]}

Abbildung 11.2 zeigt die funktionalen Abhängigkeiten in der graphischen Darstellung. Offenbar ist die Relation nicht in der dritten Normalform, da das Nichtprimärattribut *Vorwahl* transitiv abhängig vom Schlüsselkandidaten *PersNr* ist:

$$PersNr \xrightarrow{\checkmark} \{Ort, BLand\} \rightarrow Vorwahl$$

11.9 Boyce-Codd Normalform

Die Boyce-Codd Normalform (BCNF) stellt nochmals eine Verschärfung dar. Ein Relationenschema \mathcal{R} mit funktionalen Abhängigkeiten F ist in BCNF, falls für jede funktionale Abhängigkeit $\alpha \to \beta$ mindestens eine der folgenden beiden Bedingungen gilt:

- $\beta \subseteq \alpha$, d.h. die Abhängigkeit ist trivial oder
- α ist ein Superschlüssel von \mathcal{R}

Betrachten wir die folgende Relation Städte:

Städte: {[Ort, BLand, Ministerpräsident, EW]}

Städte					
Ort	BLand	Ministerpräsident	EW		
Frankfurt	Hessen	Koch	660.000		
Frankfurt	Brandenburg	Platzek	70.000		
Bonn	NRW	Steinbrück	300.000		
Lotte	NRW	Steinbrück	14.000		
		•••			

Offenbar gibt es die folgenden funktionalen Abhängigkeiten

 fd_1 : {Ort, Bland} \rightarrow {EW}

 fd_2 : {BLand} \rightarrow {Ministerpräsident}

 fd_3 : {Ministerpräsident} \rightarrow {Bland}

Daraus ergeben sich die folgenden beiden Schlüsselkandidaten

- $\kappa_1 = \{\text{Ort, Bland}\}$
- $\kappa_2 = \{\text{Ort, Ministerpräsident}\}$

Städte ist in dritter Normalform, denn das einzige Nichtprimärattribut *EW* ist nicht-transitiv abhängig von beiden Schlüsselkandidaten.

 $\it St\"{a}dte$ ist jedoch nicht in Boyce-Codd Normalform, da die linken Seiten der funktionalen Abhängigkeiten fd_2 und fd_3 keine Superschlüssel sind.

Obacht: Um Relationen in dritter Normalform oder Boyce-Codd Normalform zu erhalten, ist häufig eine starke Aufsplittung erforderlich. Dies führt natürlich zu erhöhtem Aufwand bei Queries, da ggf. mehrere Verbundoperationen erforderlich werden.