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Abstract— We show that, given a specific task, a variety of
machine learning algorithms can be applied. The approaches
are evaluated in terms of performance in a simulated environ-
ment and applicability to a real-world task. We argue that no
approach performs optimally in all aspects considered.

I. INTRODUCTION

Generally, there exists a multitude of fundamentally dif-
ferent machine learning approaches to deal with a given task.
There are two major distinctions that can be made: On one
hand regarding the learning mechanism between evolutionary
algorithms and reinforcement learning; on the other hand into
feedforward and feedback architectures that are learned.

In this paper we contrast three learning approaches for the
same tasks. The application performed for the comparison
was a swinging task in which a humanoid robot was to
perform simple acrobatics on a high-bar. This task was
chosen due to the fact that it is not straightforward to
find an optimal solution manually. Different hand-crafted
strategies, like sinus oscillation and changing servo activation
at the point of inflection or the point of lowest altitude,
were tested on the real robot and in simulation prior to
this study. Sinus oscillation induced a movement although
not very high, while the strategy of changing servo action
in point of inflection did not manage to initiate swinging
but gave high results, when the robot was manually started
by being pushed. This led to two basic, apparently non-
correlated tasks: reaching an appointed height as fast as
possible in order to even begin swinging, and reaching as
high an amplitude as possible. An additional task was coping
with an external disturbance.

Three machine learning algorithms were used for learning
these tasks: A standard evolutionary algorithm (cf. [5]) was
used in a feedforward setup, while Neural Fitted Q-Iteration
(NFQ, cf. [11]) represented the recently proposed category
of fitted value iteration algorithms [4], such as Fitted Q
Iteration [3] and LSPI [8]. In addition, an approach that
learned neural oscillation with evolutionary algorithms was
attempted, initially using a feedforward mechanism as well
but being extended to include feedback information.

II. AUFBAU

A. Tasks

performing swinging taks with different aspects of eval-
uation There were three different tasks the three machine
learning methods had to fulfill:
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Speed The first task for the robot was to reach an ap-
pointed height (0.3 rad ≈ 17.2◦) as fast as possible.
The trial length was limited to 400 cycles.

Height As second task, the robot had to perform a move-
ment as high as possible. Time is irrelevant for the
benchmark, but the trials were cut off after 400
cycles.

Noise The third task was testing the reaction of the
robot to a glitch; the robot should not be tripped
up after it. Here the disturbance was a loss of
communication in cycles 100 through 107. This
task was not trained as both tasks above, but was
tested with some strategies learned in task one or
two.

B. Configuration
1) Real robot: For the experiments on a real humanoid

robot a Robotis Bioloid1 – a 32 cm tall humanoid robot with
16cm long arms – in standard configurationwas fixed with
his hands to a rotating high bar (height 64 cm).

The movement of the robot only was induced by moving
knee and hip joint servos, all other joints are blocked.

The rotation of the high bar axis was measured to calculate
the deflection θ (see Fig. 1). Joints used in the tasks were
the hip (α) and knee (β).

In the simulation each program cycle possessed a length
of 100 ms, whereas it was 250 ms on the real robot.

Fig. 1. Sketch of real robot and angles

1http://www.robotis.com



2) Simulation: To prevent too much load on the real robot,
most testing was done in a simlulation environment called
Simloid2, which is based on the Open Dynamics Engine
(ODE3) and was developed at Humboldt-University Berlin
to simulate the Robotis Bioloid. The setup in the simulation
was slightly different: the hands were not attached to the high
bar, but the shoulders were fixed to the bar using invisible
rods; also the arrangement of the torso servos was different,
although the legs were identical.

III. COMPARISON

In this section the three different approaches are described.

A. Evolutionary algorithms

1) Setup: The first approach investigated was to use evo-
lutionary algorithms (EA, cf. [1], [5]), which are often used
in optimization. Several parts of evolutionary algorithms,
such as crossover and mutation, have to be implemented
depending on the problem, described below.

The amount of individuals is set to 26, the number of
generations is 20. Each individual stores information about
the time when the legs of the robot shall change their
position, and two positions of the servos for the knees and the
hips. The legs are either at the front or at the back, positions
in between are not stored. We assume that the points, when
the robot shall change positions, can be described as a cubic
function the coefficients of which shall be learned.

We tried three different approaches to perform the tasks
described above. In the first one we learned the coefficients of
the cubic function, the second one was to learn the positions
of the servos. These two approaches were combined in the
third one: First the coefficients of the function are learned.
The results are used to learn the position of the servos, which
in turn are used to learn the time again, and the cycle repeats
three times.

As selection routine we chose the (µ + λ)-evolutionary
strategy with µ = λ = 25 (cf. [2]).

For crossover we computed for each coefficient the aver-
age value of the parents’ value. For the servos, the crossover
ist done by combining the positions of each servo. Mutation
is done on the children by multiplying one variable with
either 0.9 or 1.1. After each reproduction the worst 25 indi-
viduals are replaced by the children as generally described
in a steady-state evolutionary algorithm (cf. [9]).

The fitness function depends on the task: for the height
task, the fitness is the height achieved. Reaching a certain
height as fast as possible leads to a fitness showing the
number of cycles needed until the height is reached. For
the third task, the final results of the other tasks are run with
a glitch and the fitness values are compared.

2) Results: The results for the speed task are shown in
Fig. 2. The lower lines belong to the approach to learn the
function to given servo positions, the upper ones show the
results for the approach to learn the positions. The approach
last mentioned does not implicate any result: The achieved

2http://www.robocup.de/AT-Humboldt/simloid.shtml
3http://ode.org/

height is less than 0.3. Thus combining the two approaches is
comparable to running the algorithm for learning coefficients
three times and is therefore not considered any more.
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Fig. 2. Fitness achieved with EA learning times or positions for swinging
fast. The upper line combines the average and the best fitness when learning
positions. The lower the lines, the better the the strategy.

Fig. 3 shows the fitness results of an evolutionary al-
gorithm performing the height task. The upper lines are
the result for learning the time, the lower ones visualize
the results for learning servo positions. As it meight by
seen easily learning times shows better results than learning
positions. This may be due to the fact that the coefficients
of the function are set to parameters not optimal for the
problem. Thus it is interesting to have a look at the results
when combining the two approaches. Fig. 4 illustrates the
results.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8  9

F
itn

es
s

Number of generations

best fitness learning time
average fitness learning time

best fitness learning positions of servos
average fitness learning positions of servos

Fig. 3. Fitness achieved with EA learning time or positions for swinging
high. The lower lines illustrate the results for learning positions, theupper
lines show the results for learning time. The higher the line, the better the
result.

The last task was to react to the glitch. For this task we
took the best results of the first tasks. Except for the height
task when learning positions, all results with the disturbance
are worse than the trials without. When performing the speed
task, no deterioration of the fitness can be achieved as the
glitch occurs in cycle 100 which is never reached.
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Fig. 4. Fitness achieved with EA learning times and positions for swinging
high. The optimization of each approach was repeated three times, taking
the results of the run before and consisting of 10 generations.

TABLE I
RESULTS WITHOUT AND WITH A GLITCH

Task Approach Without glitch With glitch
Height Learning Time 0.395854 0.33877
Height Learning Positions 0.139738 0.153971
Height Hybrid 0.404473 0.334218

B. Neural oscillations

1) Setup: Provided that the swing-up task can be solved
by an oscillatory movement of the hip servos, the appli-
cability of neural oscillations was investigated as a second
approach.

Fig. 5. Two designs of oscillatory neural networks with initial weights.
Network A is capable of producing a simple oscillation that can be used
for feedforward control. In contrast, network B is able to integrate feedback
information through additional neural units.

Using recurrent networks as neuro-controllers for robots
has previously been studied [6]: A way to model such a
neural controller is shown in Fig. 5 as network A. The top
neuron has only excitatory outputs, the bottom one only
inhibitory. The dynamics of both neurons is described with
a differential equation with certain parameters. The neural
potential from the excitatory neuron is then utilized as set
point α of the hip servo. The knee joint angle β is being
kept fixed.

There exists a framework for neuro-evolution of complete
network topologies [12] to adapt a network to a specific task,
but we implemented a straightforward evolutionary algorithm

that does not change the network topology, but simply
modifies the neural parameters and connection weights (and
thus the oscillation amplitude and frequency). For the height
task, the fitness f1 is the maximum of all reached angles θt.
For the speed task, the fitness f2 equals f1 in case that it is
less than 0.3, or 0.3+ 400−x

400 otherwise, where x is the cycle
where 0.3 is reached for the first time.

Obviously, the oscillation generated by such a network is
a feedforward control, since it incorporates no feedback from
the external world. Due to that fact, the network is expected
to perform badly when a glitch is induced. We modeled such
a glitch by not updating the internal network state for the
cycles in question.

In order to handle such disturbances properly, the network
needs to be fed with some kind of external feedback. A
second network, whose layout corresponds to network B
in Fig. 5, was implemented. Two additional neurons were
introduced and the potential of the feedback neuron was
always set to the current deflection angle θ. The weights and
internal parameters of all neurons were then learned again
by the evoluationary algorithm.

2) Results: The fitness progression for the height task
over 400 generations is shown in Fig. 6. While a maximum
deflection angle of 1.3 was achieved for the height task, the
maximum fitness for the speed task was 1.12. This implies
that the network was able to reach an angle of 0.3 after 72
cycles.
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Fig. 6. Fitness progression of network A for the height task over 400
generations.

As expected, network A was not able to cope with the an
induced glitch in a satisfying manner. Fig. 7 shows the servo
set point together with the deflection angle for the first 300
cycles of a run with induced glitch.

The results achieved with network B were promising: Not
only is the network now capable of dealing with an induced
glitch (see Fig. 8) but the network also performs much better
in the height task as it reaches a maximum angle θ of 1.74
(see Fig. 9). However, the performance in the speed task was
weaker – network B needs 90 cycles to reach an angle of
0.3.



-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  50  100  150  200  250

Cycle

deflection angle
servo set point

Fig. 7. Network A performs badly when a glitch is induced. The shaded
area corresponds to the time where the network state is not updated.
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Fig. 8. Network B was able to cope with the disturbance. After just two
periods the set point oscillation was back in sync.

C. Neural Fitted Q Iteration

1) Setup: The same setup as described in section II-B
was used once more, this time utilizing the NFQ algorithm
[11] for learning. As NFQ is a reactive approach, it requires
knowledge of the learning system’s current state at every
decision point in order to select an appropriate action. Here,
the state consisted of the current and previous amplitude θt
and θt−1, as well as the velocity ∆θt, the acceleration ∆∆θt,
the hip servo position αt and its revolution speed ∆αt. The
possible actions were binary, corresponding to two poses of
knee and hip joints: one with both being angled backwards,
and one with the knees straight and legs angled forward.
State and action were scaled in the interval [0; 1] and passed
to a neural network with two hidden layers of size 10 each,
which approximated the expected path costs Q(s, a) and was
simulated using the n++ framework [10].

During learning, the costs Qε(st, at) for each observed
transition st

at−→ st+1 were estimated by direct transition
costs of 0.02·(1− |θt−θ0|

|ε−θ0| ) – weighted with the how close the
system was to the goal heights θ0±G, in order to encourage
high amplitudes in general – added to J(st+1), which was
discounted with factor γ = 0.95. Costs of 0 were assigned if
the system had entered a terminal state, which was defined
as any state with |θt − θ0| > ε. The margin ε was set to
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Fig. 9. Fitness progression for the height task with feedback network B.

0.3 in the speed condition; in the height condition, the costs
were calculated as 0.4 ·Q0.3 + 0.6 ·Qθmax

– this was done
in order to aim for a rotation as high as possible, while still
retaining an easy goal needed to begin swinging in the first
place.

The learned policy of the robot was represented only
implicitly in the Q-function. The two possible actions were
evaluated online during the trials and the one with lower
expected costs were chosen. There were two distinct stages
during each trial: A test stage lasting 400 program cycles,
during which the policy learned thus far was performed in
order to determine the current performance of the system;
as well as a learning stage, during which exploration was
performed over the optimal action. The agent would use
an exploratory action with a probability of t−

1
8 in trial

t, thus decreasing over time; the action chosen was amax
or amin with a chance of 20% each, or at−1 otherwise.
The exploration stage ended as soon as the robot entered
a terminal state.

2) Results: Fig. 10 shows the development of the max-
imum amplitude for each test stage during the height con-
dition. While an increase in performance can be seen par-
ticularly in the decreased occurrence of low-performance
policies, the learned strategy is clearly not stable.
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Fig. 10. Amplitude achieved with NFQ during the height condition.

The speed condition shows a very similar development.



Strategies that are capable of bringing the system into a goal
occur as early as after the fifth trial, although similar as
before, the fitness does not converge within the given exper-
iment. Non-proper policies occur throughout the entire run,
and the policy does not converge within the allocated time
frame. Achieving an optimal time within the experimental
run took much longer with 237 trials. The evaluation of
strategies showed a layer-like pattern, with results occurring
only around a few values of the fitness function. This
behaviour results from the task itself: Each layer represents a
certain distinct number of turns needed to reach the terminal
state.

In the final noise condition, the strategy learned during
trial 135 of the height condition – a time when the strat-
egy was expected to generalize far enough to deal with
unknown regions of the state space – was used to test the
susceptibility to interruptions. Fig. 11 displays the amplitude
and chosen action throughout one test trial, both with and
without disturbance. The interference produces virtually no
effect regarding the system’s amplitude, safe for the arc
directly following it. Afterwards, the system immediately
compensates, increasing its amplitude again.
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Fig. 11. Amplitude during a single trial with an interruption between cycles
100 and 107.

Since the approach used here had produced visible results
in a reasonably low number of trials, it was additionally
evaluated on the real Bioloid system. The setup was virtually
the same, with the only difference being the shorter trial
duration of 200 cycles, due to the increased cycle length.
Only the speed condition was performed, with the results
shown in Fig. 12. Like in the simulation, a proper policy
could be achieved very quickly – trial 2 in this case, with
a required time of 3.75 seconds – while the performance
remained equally unstable overall; although the duration
of the experiment was kept very short, due to the high
susceptibility to mechanical failure of the robot, making
convergence unlikely either way.

Also, the system remained equally tolerant against distur-
bances, as can be seen in Fig. 13, which plots an interruption
for the policy obtained in trial 16. Again, the interruption
does not produce any major effect.
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Fig. 12. Fitness achieved with NFQ during the speed condition on the
real robot. The fitness score is inversely proportional to the number of steps
needed, with 200 or more steps yielding fitness 0. The height reached in
each trial has been included for reference, but was not used for learning.
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Fig. 13. Amplitude during a single trial with an interruption between cycles
100 and 107 for the real robot. The fluctuation in swinging height results
from the low communication frequency of the hardware.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

When comparing the preceding results of the different
learning approaches as shown in Table II, one major dif-
ference, particularly in the light of the intended application
on a real robot (see Fig. 14), was the time required to learn
the task at hand. NFQ clearly outperformed the competition
in this respect, reaching viable policies within only a few
trials, compared to hundreds of generations consisting of tens
of trial each for the evolutionary approaches.

The drawback of the approach becomes apparent as well.
The quality of the solution varies wildly over trials, with
only a marginal trend for improvement visible. Even though
one might hope for more stable results if the experiment

TABLE II

Condition
Speed Height Noise

Evolution 49 0.40 -
Oscillation A 72 1.30 -
Oscillation B 90 1.74 +
NFQ 32 1.45 +



Fig. 14. Example swinging cycle on the Bioloid, illustrating a strategy achieving maximum height.

had been continued longer (which was not feasible here, due
to the steadily increasing duration of each trial’s learning
stage as the number of observed transitions grew larger),
convergence would not be guaranteed for the approach. Thus,
one is forced to manually select the policy that scored best
during the experimental run - which is fortunately viable in
tasks such as the one considered here, where the quality of
a strategy is easy to assess on-line and the best one can be
retained.

In terms of performance, feedback-based neural oscillation
produced clearly the best results in the height condition,
although it remains unclear whether NFQ could eventually
reach the same height given more time. Still, the latter always
suffers from the drawback that unlike the oscillating system,
it does not possess the a priori knowledge that a sinus-like
pactivity pattern should be used to achieve swinging. Even
later policies tend to revert to a strategy of remaining in
one pose and switching only momentarily to the other upon
reaching a certain height, as seen in Fig. 15.
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Fig. 15. Amplitude and servo control for the NFQ-policy achieving best
results during the height condition.

However, both evolution an particularly NFQ reached the
goal height during the speed task considerably faster than
neural oscillation of either type. This is likely owed to their
ability to perform even non-rhythmic actions, whereas neural
oscillation was dependent on moving in a pattern that even
if not neccessarily sinus-like, was nevertheless cyclic.

Disturbances in the system were predictably not handled
easily by the feedforward control systems. However, it could
be seen that the ability to adapt to external influence is in no
way unique to classical reactive approaches such as NFQ,
but could also be handled with an adapted design of neural
oscillation.

B. Future Works

There are several possible approaches to improving the
speed and performance of the learning systems described
here. Some effort has been made to overcome the main
drawback of the NFQ algorithm observed, namely the lack
of policy convergence. [7] describe an approach where the
cost approximators learned over successive iterations are
eventually polled offline and a policy generated based on
a majority vote, yielding a strategy performing better than
those in each individual step.

Another possible route to take lies in the transfer of
simulation results to the real system. While a policy learned
in the simulation could not be directly applied on the Bioloid
due to differences in joint configuration, cycle length, swing
setup and encoder ranges, the results thus acquired might at
least serve as a starting point for learning in a real system,
potentially cutting down the required time to acceptable
levels.
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