Theoretical Neuroscience: Exercise 9-1

Jan Scholz

15. January 2002

The population density x of a species is determined by the equation

$$
\frac{d x}{d t}=\frac{2 x^{2}}{1+x^{3}}-x \quad, x \geq 0
$$

(a) Graph of $d x / d t$ as a function of x :

(b) The fixed points are determined by calculating the roots of $f(x)$:

$$
\begin{aligned}
\frac{2 x^{2}}{1+x^{3}}-x & =0 \\
2 x^{2} & =x+x^{4} \\
x^{4}-2 x^{2}+x & =0 \\
x\left(x^{3}-2 x+1\right) & =0 \\
x=0 & \vee x^{3}-2 x+1=0
\end{aligned}
$$

By looking at the last equation, we see that 1 is a root. Factorizing $\left(x^{3}-2 x+1\right):(x-1)$ leads to:

$$
(x-1)\left(x^{2}+x-1\right)
$$

After having solved the quadratic equation, we finally have found 3 roots for $x \geq 0$:

$$
x=0 \vee x=1 \vee x=\frac{1}{2}(\sqrt{5}-1)
$$

(c) Stability: To determine the stability we either look at the graph or calculate the slope of $f(x)$ at the fixed points. In the latter case we need the derivative $f^{\prime}(x)$.

$$
f^{\prime}(x)=\frac{4 x-2 x^{4}}{\left(1+x^{3}\right)^{2}}-1
$$

Slope at the fixed points:

$$
\begin{aligned}
f^{\prime}(0) & =-1 \\
f^{\prime}\left(\frac{1}{2}(\sqrt{5}-1)\right) & \approx 0.427051 \\
f^{\prime}(1) & =-\frac{1}{2}
\end{aligned}
$$

The first fixed point at $x=0$ is stable the second one unstable and the fixed point at $x=1$ is again stable.
(d) Behavior in the limit $t \rightarrow \infty$:

With $x(0)=0.001$ the population decreases to 0 , because this is a stable fixed point which is very close.
With $x(0)=0.8$ the population increases $(d x / d t$ is positive at 0.8$)$ and stabilizes at a density of 1 .
A starting population density of 10 will decrease and settle down at a stable density of 1 .

