Methods of ai - Assignment 2

Sebastian Bitzer Robert Freund

December 3, 2002

1 Exercise 1

1.1 (i)

There are only two possibilities a search algorithm could not terminate. It
could either

e get stuck in an infinite graph
e get trapped in a cycle

Since a finite graph is assumed in the task, the first can not be the case. It
is also impossible for A* to become caught up in a cycle since A* maintains
a closed list which enables it to do cycle checks.

1.2 (ii)

Space complexity: A* on level d keeps for each preceding level b nodes in
memory. O(b - d)

Time complexity: A* on level d has considered b nodes in each preceding
level. O(b - d)

1.3 (iii)

Local maximum problem occuring in state S:

Plateau problem occuring in state S:

w W
S)—()

\Z/

oL

2 Exercise 2 (Properties of heuristic functions)

2.1 (1)

premise (heuristic function obeys triangle inequality):
h(A— C)<h(A— B)+h(B— C)

assertion (f-costs along any path is nondecreasing):

f(A) < f(B),A<B

proof:
f(A)=g(X — A)+h(A—C)

where g(X — A) are the costs from the starting state X till A and h(A — C)
are the estimated costs from A to final state C

according to premise it is valid that:
g X —>A)+h(A—-C)<g(X - A)+h(A— B)+h(B—C)

where B is a node between A and the final state C

h(X) has to be admissible, i.e.:
WA — B) < g(A— B)
therefore:
g X - A)+h(A—-B)+h(B—C)<g(X —-A) +g9(A— B)+h(B—C)
and these are the costs for B:
9(X = A)+g(A— B)+h(B — C) = f(B)
S0:

f(A) < f(B),A<B o

2.2 (ii)

hi and hs are admissible

(a) h(s) = hi(s) + ha(s)
is not admissible in general, but if hy(s) + ha(s) < g(s) then h(s) is admissi-
ble, too

(b) h(s) = |h1(s) — ha(s)]
is admissible (let hy be the bigger one: then hy — hy < hy < g)

(¢) h(s) = max(hi(s), ha(s))

is admissible (if both functions are admissible, then, of course, so is the max-
imum of them)

(d) h(s) = min(hi(s), ha(s))
is admissible (if both functions are admissible, then, of course, so is the min-
imum of them)

() hls) = Pttt

2
is admissible (let h; be the bigger one: then Mtz < mth — M — p) anq
hy is admissible)

3 Exercise 3

The names of the nodes denote the position of the empty part of the puzzle:
A1l: First line, first column of puzzle;

A2: First line, second column, etc.

The edges are labeled with the costs: f*(n) = g(n) + h*(n)

2 3 2 3 2 3 23 213 3
1 4 1 4 1 4 814 814 4
7 5 7 5 7 3 615 615)

4 Exercise 4 (Human Problem Solving)

X,Y are variables for (possibly empty) strings of letters
m is an integer
f is a function

Iter(X,m, f) — X fYX) ... f~1(X)

RAWX, f,(Y1,...,) = XV fH(X)Ys. .. fHX)Y,
LAX, f,(Y1,..., V) = ViXYo fYX) ... Y, f"H(X)
Con,(Xy,...,X,) — X1... X,

Unit,(X1,..., X,) — (X1...X,)

41 (i)
(a) aabbce
R_Alt(a, succ, {a, b, c))
L_Alt(a, succ, {a, b, c))
(b) abceba
Congy(Iter(a, 3, succ), Iter(c, 3, pre))
Cong(Iter(a,?2, succ), Iter(c,2,id), Iter(b,2, pre))
(c) atbefdf
L_Alt(f,id, {(a,bec,d))
R_Alt(a, succ, {f,0, f, [)) where () is the empty string
(d) abedef
Iter(a, 6, succ)
Con(Iter(a,3, succ), Iter(d, 3, succ))
(e) acbceede
L_Alt(c,id,{a,b,c,d))
R_Alt(a, succ, {c,c,c,c))

4.2 (i)
aabb : bbbcee :: cedd : dddeee

aabb : bbbcce can be represented as:
Iter(Iter(X,2,id),2, succ) : Iter(Iter(Y,3,1id), 2, succ)
succ(X) =Y ANX ="a"

where function succ(Z) is defined as increasing every single character in the
string for its own and thus obtaining bb from succ(aa)

and ccdd : dddeee can be represented as:
Iter(Iter(X,2,id), 2, succ) : Iter(Iter(Y,3,id), 2, succ)
succe(X) =Y ANX =7¢"

It is obvious that this is an analogy, because the structures are equal.

W hat could be a measure for different descriptions to figure out which
description is the preferred one for humans?

We could imagine several possibilities:
e fewest operator applications

e value function for representations, where the most intuitive operator
gets the smallest value and the function is an expression over all occur-
ring operators in the representation

o fewest nesting of operators

