
Methods of ai - Assignment 2

Sebastian Bitzer Robert Freund

December 3, 2002

1 Exercise 1

1.1 (i)

There are only two possibilities a search algorithm could not terminate. It
could either

• get stuck in an infinite graph

• get trapped in a cycle

Since a finite graph is assumed in the task, the first can not be the case. It
is also impossible for A* to become caught up in a cycle since A* maintains
a closed list which enables it to do cycle checks.

1.2 (ii)

Space complexity: A∗ on level d keeps for each preceding level b nodes in
memory. O(b · d)
Time complexity: A∗ on level d has considered b nodes in each preceding
level. O(b · d)

1.3 (iii)

Local maximum problem occuring in state S:

S

A

3

F

2

B

2

C

2

F

2

1

Plateau problem occuring in state S:

S

A

3

F

2

B

3

F

3

Ridge problem:

S

A

6

F

2

B

2

C

3

D

3

F

2

2 Exercise 2 (Properties of heuristic functions)

2.1 (i)

premise (heuristic function obeys triangle inequality):

h(A → C) ≤ h(A → B) + h(B → C)

assertion (f-costs along any path is nondecreasing):

f(A) ≤ f(B), A ≤ B

2

proof :

f(A) = g(X → A) + h(A → C)

where g(X → A) are the costs from the starting state X till A and h(A → C)
are the estimated costs from A to final state C

according to premise it is valid that:

g(X → A) + h(A → C) ≤ g(X → A) + h(A → B) + h(B → C)

where B is a node between A and the final state C

h(X) has to be admissible, i.e.:

h(A → B) ≤ g(A → B)

therefore:

g(X → A) + h(A → B) + h(B → C) ≤ g(X → A) + g(A → B) + h(B → C)

and these are the costs for B:

g(X → A) + g(A → B) + h(B → C) = f(B)

so:

f(A) ≤ f(B), A ≤ B �

2.2 (ii)

h1 and h2 are admissible

(a) h(s) = h1(s) + h2(s)
is not admissible in general, but if h1(s) + h2(s) ≤ g(s) then h(s) is admissi-
ble, too

(b) h(s) = |h1(s) − h2(s)|
is admissible (let h1 be the bigger one: then h1 − h2 ≤ h1 ≤ g)

(c) h(s) = max(h1(s), h2(s))

3

is admissible (if both functions are admissible, then, of course, so is the max-
imum of them)

(d) h(s) = min(h1(s), h2(s))
is admissible (if both functions are admissible, then, of course, so is the min-
imum of them)

(e) h(s) = h1(s)+h2(s)
2

is admissible (let h1 be the bigger one: then h1+h2

2
≤ h1+h1

2
= 2h1

2
= h1 and

h1 is admissible)

3 Exercise 3

The names of the nodes denote the position of the empty part of the puzzle:
A1: First line, first column of puzzle;
A2: First line, second column, etc.
The edges are labeled with the costs: f ∗(n) = g(n) + h∗(n)

4

B3

A3

1+6

B2

1+4

A2

2+5

B1

2+3

A1

3+2

A2

4+1

B2

5+0

A3

5+2

C1

3+4

C2

2+5

C3

1+6

2 8 3
1 6 4
7 5

→
2 8 3
1 4
7 6 5

→
2 3
1 8 4
7 6 5

→
2 3

1 8 4
7 6 5

→
1 2 3

8 4
7 6 5

→
1 2 3
8 4
7 6 5

5

4 Exercise 4 (Human Problem Solving)

X,Y are variables for (possibly empty) strings of letters
m is an integer
f is a function

Iter(X,m, f) → Xf 1(X) . . . fm−1(X)

R Alt(X, f, 〈Y1, . . . , Yn〉) → XY1f
1(X)Y2 . . . fn−1(X)Yn

L Alt(X, f, 〈Y1, . . . , Yn〉) → Y1XY2f
1(X) . . . Ynf

n−1(X)

Conn(X1, . . . , Xn) → X1 . . . Xn

Unitn(X1, . . . , Xn) → (X1 . . . Xn)

4.1 (i)

(a) aabbcc

R Alt(a, succ, 〈a, b, c〉)

L Alt(a, succ, 〈a, b, c〉)

(b) abccba

Con2(Iter(a, 3, succ), Iter(c, 3, pre))

Con3(Iter(a, 2, succ), Iter(c, 2, id), Iter(b, 2, pre))

(c) afbcfdf

L Alt(f, id, 〈a, bc, d〉)

R Alt(a, succ, 〈f, ∅, f, f〉) where ∅ is the empty string

(d) abcdef

Iter(a, 6, succ)

Con(Iter(a, 3, succ), Iter(d, 3, succ))

(e) acbcccdc

L Alt(c, id, 〈a, b, c, d〉)

R Alt(a, succ, 〈c, c, c, c〉)

6

4.2 (ii)

aabb : bbbccc :: ccdd : dddeee

aabb : bbbccc can be represented as:

Iter(Iter(X, 2, id), 2, succ) : Iter(Iter(Y, 3, id), 2, succ)

succ(X) = Y ∧ X = ”a”

where function succ(Z) is defined as increasing every single character in the
string for its own and thus obtaining bb from succ(aa)

and ccdd : dddeee can be represented as:

Iter(Iter(X, 2, id), 2, succ) : Iter(Iter(Y, 3, id), 2, succ)

succ(X) = Y ∧ X = ”c”

It is obvious that this is an analogy, because the structures are equal.

W hat could be a measure for different descriptions to figure out which
description is the preferred one for humans?

We could imagine several possibilities:

• fewest operator applications

• value function for representations, where the most intuitive operator
gets the smallest value and the function is an expression over all occur-
ring operators in the representation

• fewest nesting of operators

7

