Methods of ai - Assignment 2

Sebastian Bitzer
Robert Freund

December 3, 2002

1 Exercise 1

$1.1 \quad$ (i)

There are only two possibilities a search algorithm could not terminate. It could either

- get stuck in an infinite graph
- get trapped in a cycle

Since a finite graph is assumed in the task, the first can not be the case. It is also impossible for A^{*} to become caught up in a cycle since A^{*} maintains a closed list which enables it to do cycle checks.

1.2 (ii)

Space complexity: A^{*} on level d keeps for each preceding level b nodes in memory. $O(b \cdot d)$
Time complexity: A^{*} on level d has considered b nodes in each preceding level. $O(b \cdot d)$

1.3 (iii)

Local maximum problem occuring in state S :

Plateau problem occuring in state S :

Ridge problem:

2 Exercise 2 (Properties of heuristic functions)

2.1 (i)

premise (heuristic function obeys triangle inequality):

$$
h(A \rightarrow C) \leq h(A \rightarrow B)+h(B \rightarrow C)
$$

assertion (f -costs along any path is nondecreasing):

$$
f(A) \leq f(B), A \leq B
$$

proof:

$$
f(A)=g(X \rightarrow A)+h(A \rightarrow C)
$$

where $g(X \rightarrow A)$ are the costs from the starting state X till A and $h(A \rightarrow C)$ are the estimated costs from A to final state C
according to premise it is valid that:

$$
g(X \rightarrow A)+h(A \rightarrow C) \leq g(X \rightarrow A)+h(A \rightarrow B)+h(B \rightarrow C)
$$

where B is a node between A and the final state C
$h(X)$ has to be admissible, i.e.:

$$
h(A \rightarrow B) \leq g(A \rightarrow B)
$$

therefore:

$$
g(X \rightarrow A)+h(A \rightarrow B)+h(B \rightarrow C) \leq g(X \rightarrow A)+g(A \rightarrow B)+h(B \rightarrow C)
$$

and these are the costs for B :

$$
g(X \rightarrow A)+g(A \rightarrow B)+h(B \rightarrow C)=f(B)
$$

so:

$$
f(A) \leq f(B), A \leq B
$$

2.2 (ii)

h_{1} and h_{2} are admissible
(a) $h(s)=h_{1}(s)+h_{2}(s)$
is not admissible in general, but if $h_{1}(s)+h_{2}(s) \leq g(s)$ then $h(s)$ is admissible, too
(b) $h(s)=\left|h_{1}(s)-h_{2}(s)\right|$
is admissible (let h_{1} be the bigger one: then $h_{1}-h_{2} \leq h_{1} \leq g$)
(c) $h(s)=\max \left(h_{1}(s), h_{2}(s)\right)$
is admissible (if both functions are admissible, then, of course, so is the maximum of them)
(d) $h(s)=\min \left(h_{1}(s), h_{2}(s)\right)$
is admissible (if both functions are admissible, then, of course, so is the minimum of them)
(e) $h(s)=\frac{h_{1}(s)+h_{2}(s)}{2}$
is admissible (let h_{1} be the bigger one: then $\frac{h_{1}+h_{2}}{2} \leq \frac{h_{1}+h_{1}}{2}=\frac{2 h_{1}}{2}=h_{1}$ and h_{1} is admissible)

3 Exercise 3

The names of the nodes denote the position of the empty part of the puzzle: A1: First line, first column of puzzle;
A2: First line, second column, etc.
The edges are labeled with the costs: $f^{*}(n)=g(n)+h^{*}(n)$

2	8	3				
1	6	4				
7		5	\rightarrow	2	8	3
:---	:---	:---				
1		4				
7	6	5	\rightarrow	2		3
:---	:---	:---				
1	8	4				
7	6	5	\rightarrow		2	3
:---	:---	:---				
1	8	4				
7	6	5	\rightarrow	1	2	3
:---	:---	:---				
	8	4				
7	6	5	\rightarrow	1	2	3
:---	:---	:---				
8		4				
7	6	5				

4 Exercise 4 (Human Problem Solving)

X, Y are variables for (possibly empty) strings of letters m is an integer
f is a function

$$
\begin{aligned}
& \operatorname{Iter}(X, m, f) \rightarrow X f^{1}(X) \ldots f^{m-1}(X) \\
& R_{-} \operatorname{Alt}\left(X, f,\left\langle Y_{1}, \ldots, Y_{n}\right\rangle\right) \rightarrow X Y_{1} f^{1}(X) Y_{2} \ldots f^{n-1}(X) Y_{n} \\
& {\operatorname{L_ Alt~}\left(X, f,\left\langle Y_{1}, \ldots, Y_{n}\right\rangle\right) \rightarrow Y_{1} X Y_{2} f^{1}(X) \ldots Y_{n} f^{n-1}(X)}_{\operatorname{Con}_{n}\left(X_{1}, \ldots, X_{n}\right) \rightarrow X_{1} \ldots X_{n}}^{\operatorname{Unit}_{n}\left(X_{1}, \ldots, X_{n}\right) \rightarrow\left(X_{1} \ldots X_{n}\right)}
\end{aligned}
$$

4.1 (i)

(a) aabbcc

$$
\begin{aligned}
& R_{-} \operatorname{Alt}(a, \operatorname{succ},\langle a, b, c\rangle) \\
& L_{_} \operatorname{Alt}(a, \operatorname{succ},\langle a, b, c\rangle)
\end{aligned}
$$

(b) abccba

$$
\begin{aligned}
& \mathrm{Con}_{2}(\operatorname{Iter}(a, 3, \operatorname{succ}), \operatorname{Iter}(c, 3, \text { pre })) \\
& \operatorname{Con}_{3}(\operatorname{Iter}(a, 2, \operatorname{succ}), \operatorname{Iter}(c, 2, i d), \operatorname{Iter}(b, 2, \text { pre }))
\end{aligned}
$$

(c) afbcfdf

$$
\begin{aligned}
& L_{-} A l t(f, i d,\langle a, b c, d\rangle) \\
& R_{-} A l t(a, s u c c,\langle f, \emptyset, f, f\rangle) \quad \text { where } \emptyset \text { is the empty string }
\end{aligned}
$$

(d) abcdef

$$
\begin{aligned}
& \operatorname{Iter}(a, 6, \operatorname{succ}) \\
& \operatorname{Con}(\operatorname{Iter}(a, 3, \operatorname{succ}), \operatorname{Iter}(d, 3, s u c c))
\end{aligned}
$$

(e) acbcccdc

$$
\begin{aligned}
& L_{-} A l t(c, i d,\langle a, b, c, d\rangle) \\
& R _A l t(a, \text { succ, }\langle c, c, c, c\rangle)
\end{aligned}
$$

4.2 (ii)

aabb : bbbccc :: ccdd : dddeee
$a a b b: b b b c c c$ can be represented as:

$$
\begin{aligned}
& \operatorname{Iter}(\operatorname{Iter}(X, 2, i d), 2, \operatorname{succ}): \operatorname{Iter}(\operatorname{Iter}(Y, 3, i d), 2, \operatorname{succ}) \\
& \operatorname{succ}(X)=Y \wedge X=" a "
\end{aligned}
$$

where function $\operatorname{succ}(Z)$ is defined as increasing every single character in the string for its own and thus obtaining $b b$ from $\operatorname{succ}(a a)$
and $c c d d$: dddeee can be represented as:

$$
\begin{aligned}
& \operatorname{Iter}(\operatorname{Iter}(X, 2, i d), 2, \operatorname{succ}): \operatorname{Iter}(\operatorname{Iter}(Y, 3, i d), 2, \operatorname{succ}) \\
& \operatorname{succ}(X)=Y \wedge X=" c "
\end{aligned}
$$

It is obvious that this is an analogy, because the structures are equal.

W hat could be a measure for different descriptions to figure out which description is the preferred one for humans?

We could imagine several possibilities:

- fewest operator applications
- value function for representations, where the most intuitive operator gets the smallest value and the function is an expression over all occurring operators in the representation
- fewest nesting of operators

