Applications of the Channel Theory

Commonsense Reasoning Representations

Sebastian Bitzer (sbitzer@uos.de)
Seminar Knowledge Representation
University of Osnabrueck
10.07.2003

Overview

- Repetition
- Commonsense Reasoning / Nonmonotonicity
- (Imperfect) Representations

Basics

- tokens (particulars, instances): things in the world (in time) - a, b, c
- types (in state spaces: states): a, β, ?, s
- classification: \boldsymbol{A}, set of tokens (A) is classified in set of types
- if a is of type a we write: $a_{1}{ }_{A} a$ (with respect to A)

Information Channels and Local Logics

- C is an information channel, consists of core \boldsymbol{C} and infomorphisms from parts to \boldsymbol{C} :

- L is a local logic, consists of \boldsymbol{A}, a set of constraints of \boldsymbol{A} and a set of normal tokens
- normal tokens: satisfy all constraints in L

State Spaces

- \boldsymbol{S} is a state space, consists of a set of tokens (S), a set of states $\left(\mathrm{O}_{S}\right)$ and a function mapping between them: $\boldsymbol{S}=\left\langle S, \mathrm{O}_{S}\right.$, state \rangle
- $\operatorname{Evt}(\boldsymbol{S})$ is the according classification
- $\log (\boldsymbol{S})$ is the local logic on $\operatorname{Evt}(\boldsymbol{S})$

Overview

- Problem of Nonmonotonicity
- State Spaces, enhanced
- Background Conditions
- Relativising to a Background Condition

Baseball:
$\left(a_{I}\right)$ pitcher throws ball to batter (β) ball will arrive at batter

$$
\Rightarrow a_{1}+\beta
$$

monotonicity:
$a_{1}, a_{2}+\beta$
but:
$\left(a_{2}\right)$ ball hits bird

$$
\Rightarrow a_{1}, a_{2}+\neg \beta
$$

Real valued State Spaces

- $\boldsymbol{S}=\left\langle S, \mathrm{O} \subseteq \mathrm{R}^{n}\right.$, state \rangle
- each state is a vector s with dimension n
- s has input and output coordinates ($s=$ $s_{i} \times s_{o}$) $=$ observables
- outputs can be computed from inputs

Judith's heating system

- a state $s=\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}\right)$

Background Conditions

- B is a function from domain P to real numbers
- P in inputs of S
- is called set of parameters of B
- a state s satisfies B if the corresponding inputs of s have same value as given by B ($s_{i}=B(i) \forall i \in P$)
- $B_{1}=B_{2} \Leftrightarrow P_{1} \subseteq P_{2}$

Judith's heating system

(a_{I}) thermostat: $65=s_{I}=70$

$$
a_{l}, a_{2}+\beta
$$

$\left(a_{2}\right)$ room temperature: $s_{2}=58$

$$
a_{1}, a_{2}, a_{3}+\neg \beta
$$

$\left(a_{3}\right)$ power: $s_{3}=0$
(β) hot air is coming out of the vents
$\Rightarrow a_{1}, a_{2}, \beta$ are silent about s_{3}, s_{4}, s_{5} (which are supposed to be the parameters)
but:
a_{3} is not silent about s_{3}
10.07.2003

Silence

- a is silent on B, if it does not tell anything about the parameters of B :
$-s=_{B} s^{\prime}$ if $s_{t}=s_{t}{ }^{\prime} \forall t \notin B$
$-\forall s, s^{\prime}$: if $s={ }_{B} s^{\prime}$ and $s \in a$ then $s^{‘} \in a$
\Rightarrow if we are reasoning about an observable t, then t must be either an explicit input or output of the system (and not a parameter)
\qquad

Judith's heating system

$\left(a_{1}\right)$ thermostat: $65=s_{1}=70$
$\left(a_{2}\right)$ room temperature: $s_{2}=58$
$\left(a_{3}\right)$ power: $s_{3}=0$
(β) hot air is coming out of the vents
$\mathrm{B}=\left\{s_{3}=s_{4}=s_{5}=1\right\}$
$\Rightarrow B ? a_{3}=\left\{s_{4}=s_{5}=1\right\}$

Weakening

- Gis a set of types
- the weakening of B by $G(B$? $G)$ is the greatest lower bound of all $B_{0}=B$ such that every type $a \in G$ is silent on B_{0}
$\Rightarrow B ? a$ is restriction of B to the set of inputs $i \in P$ such that a is silent on i

Relativising to a Background Condition

- S_{B} is relativisation of S to B
- subspace of \boldsymbol{S}
- only states that satisfy B
- $\log \left(S_{B}\right)$ is the local logic on $\operatorname{Evt}(S)$ supported by B
- consistent states are those satisfying B
- entailment only over states satisfying B
- $G+_{B}$? $\Leftrightarrow \forall s$ sat. B (if $s \in p \forall p \in G$ then $s \in q$ for some $q \in$?)
- normal tokens are those satisfying B

Judith's heating system

$\left(a_{l}\right)$ thermostat: $65=s_{l}=70$
$\left(a_{2}\right)$ room temperature: $s_{2}=58$
$\left(a_{3}\right)$ power: $s_{3}=0$
(β) hot air is coming out of the vents

- $a 1, a 2+\beta$ holds in $\log \left(S_{B}\right)$
- because a_{3} not silent about s_{3} : switch to B ? a_{3} $\Rightarrow a 1, a 2+\beta$ does not hold in $\log \left(S_{B ? a 3}\right)$ (is no constraint there)
$\Rightarrow a 1, a 2, a 3+\neg \beta$ is constraint in $\log \left(\boldsymbol{S}_{B ? a 3}\right)$

Strict Entailment

- $G \Rightarrow_{B}$?: G strictly entails ? relative to B
$-G t_{\log \left(S_{B}\right)}$?
- all types in $G \cup$? are silent on B
- then (conclusions):
$-\underset{?}{G} \Rightarrow_{B}$? is a better model of human reasoning than $G+_{B}$
$-G \Rightarrow_{B}$? is monotonic in G and ? (only with weakening)
- if you have a type a not silent on B it is natural to weaken B : B ? a
$-G \Rightarrow_{B}$? does not entail: $G, a \Rightarrow_{B ? a}$? or $G \Rightarrow_{B \backslash a}$?, a

Representations

Overview

- The Problem of Imperfect Representations
- Representation Systems
- Explaining Imperfect Representations

The bridge

Representation Systems

- $R=\langle C, L\rangle$ is a representation system
$-\mathrm{C}=\{f: \boldsymbol{A} \leftrightarrows \boldsymbol{C}, \mathrm{g}:$ $\boldsymbol{B} \leftrightarrows C\}$ is a binary channel
$-L$ is the local logic on the core \boldsymbol{C}

Representations Targets

Representations

- a is a representation of b, if a, b are connected by some $c \in \boldsymbol{C}$
- a is accurate representation of b, if c is normal token $\left(c \in N_{\mathrm{L}}\right)$
- content of $a: a_{1}^{1} G$ $f[G]+\llcorner g(?)$
- a represents b as being of type β, if β in content of a
if a is accurate representation of b and a represents b as being of type β, then $b_{\left.\right|_{B}} \beta$

Explaining Imperfect
 Representations

- tokens in target classification (\boldsymbol{B}) are really regions at times
- if b_{0} changes to b_{1} this gives rise to a new connection c_{1} between a and b_{1}
$\Rightarrow a$ represents both: b_{0} and b_{1}
\Rightarrow but c_{1} supports not all of the constraints of R

References

- Jon Barwise and Jerry Seligman, Information Flow, The Logic of Distributed Systems, Cambridge University Press, 1997

