1 The Simplex Algorithm

C is a conjunction of equations; i, I, j, J, n, m are integers; a_{ij}, b_i, e_i, d_i are constants; f, t are linear expressions; c_1 \ldots c_n are equations; x_i, y_j are variables.

simplex_opt(C, f)
 let C be of the form c_1 \land \cdots \land c_n
 for each i \in \{1, \ldots, n\}
 let c_i be of the form x_i = b_i + \sum_{j=1}^m a_{ij} y_j
 endfor
 let f be of the form e + \sum_{j=1}^m d_j y_j

 % Choose variable y_J to become basic
 if for all j \in \{1, \ldots, m\} d_j \geq 0 then
 return ⟨true, C, f⟩
 endif

 choose J \in \{1, \ldots, m\} such that d_J < 0

 % Choose variable x_I to become non-basic
 if for all i \in \{1, \ldots, n\} a_{ij} \geq 0 then
 return ⟨false, C, f⟩
 endif

 choose I \in \{1, \ldots, n\} such that
 \[\frac{-b_i}{a_{ij}} = \min \{ \frac{-b}{a_{ij}} | a_{ij} < 0 \text{ and } 1 \leq i \leq n \} \]
 t := \frac{x_I - b_i - \sum_{j=1, j \neq I}^m a_{ij} y_j}{a_{ij}}
 c_I := (y_J = t)
 replace y_J by t in f
 for each i \in \{1, \ldots, n\}
 if i \neq I then replace y_j by t in c_i endif
 endfor
 return simplex_opt(\land_{i=1}^n c_i, f).