The Simplex Algorithm

A n approach to optimization problems for linear real arithmetic constraints

Sebastian Bitzer (sbitzer@uos.de)
Seminar Constraint Logic Programming
University of Osnabrueck
November 11 ${ }^{\text {th }} 2002$

Content

- Optimization - what is that?
- The Simplex Algorithm - background
- Simplex form
- Basic feasi ble solved form / basic feasible solution
- The al gorithm
- Initial basic feasi ble solved form

Content

- Optimization - what is that?
- The Simplex Algorithm- background
- Simplex form
- Basic feasible solved form/ basic feasible solution
- The al gorithm
- Initial basic feasible solved form

Optimization - what is that?

- In general
- Optimization problem (C, f) with constraint C and objective function f
e.g.

$$
C:=X+Y \geq 4
$$

Optimization - what is that?

Objectivefunction f:

- expression over variables V in constrai nt C
- eval uates to a real number
- eg.

$$
f:=X^{2}+Y^{2}
$$

Optimization - what is that?

a val uation θ (substituting variables by val ues):

$$
\theta=\left\{X_{1} \leftarrow v_{1}, X_{2} \leftarrow v_{2}, \ldots, X_{n} \leftarrow v_{n}\right\}
$$

solution of objective function using θ :

$$
f(\theta):=f\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

Optimization - what is that?

preferred val uations:

- valuation θ is preferred to val uation θ^{\prime}, if $f(\theta)<f\left(\theta^{\prime}\right)$
optimal solution:
- θ is optimal,
if $f(\theta)<f\left(\theta^{\prime}\right)$ for all solutions $\theta^{\prime} \neq \theta$
(there is no solution that is preferred to θ)

Optimization - what is that?

Do all problems have an optimal solution?

$$
\begin{gathered}
X \leq 7 \wedge X \geq 49 \\
X \leq 77 \text { with } f(X)=X
\end{gathered}
$$

H2

Optimization Example

An optimization problem

$$
\left(C \equiv X+Y \geq 4, f \equiv X^{2}+Y^{2}\right)
$$

Find the closest point to the origin satisfying the C.
Some solutions and f val ue

$$
\begin{array}{lcr}
\{X=0, Y=4\} & 16 & \\
\{X=3, Y=3\} & 18 & \text { Optimal solution } \\
\{X=2, Y=2\} & 8 & \{X=2, Y=2\}
\end{array}
$$

Content

- Optimization - what is that?
- The Simplex Algorithm - background
- Simplex form
- Basic feasi ble solved form / basic feasible solution
- The al gorithm
- Initial basic feasi ble solved form

Background

- George Dantzig
- born 8.11.1914, Portand
- invented "Simplex Method of
Optimisation" in 1947
- this grew out of his work with the USAF

Background

- origi nates from planni ng tasks:
- plans or schedules for training
- Iogistical supply
- depl oyment of men
- has in practice usually polynomial cost

Quotes

Eugene Lawler (1980):

[Linear programming] is used to allocate resources, plan production, schedule workers, plan investment portfolios and formulate marketing (and military) strategies. The versatility and economic impact of linear programming in today's industrial world is truly awesome.

Quotes

Dantzig I:

The tremendous power of the simplex method is a constant surprise to me.

Dantzig II:

... it is interesting to note that the original problem that started my research is still outstanding - namely the problem of planning or scheduling dynamically over time, particularly planning dynamically under uncertainty. If such a problem could be successfully solved it could eventually through better planning contribute to the well- being and stability of the world.

Content

- Optimization - what is that?
- The Simpl ex Algorithm - background
- Simplex form
- Basic feasible solved form / basic feasible solution
- The al gorithm
- Initial basic feasi ble solved form
$\xrightarrow[\sim]{H}$ H The example

Simplex form

- (C, f) is in simplex form, if C has the form $C_{E} \wedge C_{I}$
- C_{E} is a conjunction of linear arithmetic equations
- C_{I} is a term that constrai ns all variables in C to be ≥ 0

Simplex form

al lowed conversions to get simplex form:

- X not constrai ned to be non-negative:

$$
X=X^{+}-X^{-} \quad \text { with } X^{+} \geq 0 \text { and } X^{-} \geq 0
$$

- inequal ity $\mathrm{e} \leq \mathrm{r}$ ($\mathrm{e}=$ expression and $\mathrm{r}=$ number)

$$
e \leq r \Leftrightarrow e+S=r \quad \text { with } S \geq 0
$$

$\xrightarrow[\sim]{H}$ H The example

Content

- Optimization - what is that?
- The Simpl ex Algorithm - background
- Simplex form
- Basic feasible solved form / basic feasible solution
- The al gorithm
- Initial basic feasible solved form

Basic feasi ble sol ved form

feasible = practicable, able to be carried out (durchführbar, anwendbar)

- a simplex form optimization problem is in basic feasible solved form, if all equations in C_{E} (of the simplex form) have the form:

$$
X_{o}=b+a_{1} X_{1}+\cdots+a_{n} X_{n}
$$

Basic feasi ble solved form

$$
X_{o}=b+a_{1} X_{1}+\cdots+a_{n} X_{n}
$$

- X_{0} is called basic variable, does not occur anywhere else (neither in objective function)
- $X_{1 \ldots n}$ are parameters
- $b, a_{1 \ldots n}$ are constants
- $b \geq 0$

Basic feasible solution

$$
X_{0}=b+a_{1} X_{1}+\cdots+a_{n} X_{n}
$$

- corresponding basic feasi ble solution to a basic feasi ble solved form:
- setting each $X_{1 . . . n}=0$

$$
\Rightarrow X_{\mathrm{o}}=b
$$

Content

- Optimization - what is that?
- The Simplex Algorithm - background
- Simplex form
- Basic feasible solved form / basic feasible solution
- The algorithm
- Initial basic feasi ble solved form

The al gorithm

- idea: optimal solution has to be in one of the vertices
- so: go from one vertex to the preferred next vertex
- end: if there is no preferred vertex, the actual has to be the optimal solution

The al gorithm

in other words:

- take a basic feasi bl e sol ved form
- Iook for an "adjacent" basic feasible solved form whose basic feasible solution decreases the val ue of the objective function
- if there is no such adjacent basic feasi bl e solved form, then the optimum has been found

The al gorithm

- adjacent \equiv just one si ingle pi vot
- pivoting \equiv move one variable out of basic variables ($=$ exit variable) and another in (三entry variable)

$$
\begin{aligned}
& X=49-7 Y+21 Z \\
& Y=7+3 Z-\frac{1}{7} X
\end{aligned}
$$

The al gorithm

Problem

Which variables should be exiting resp. entering?

Entering Variable:

$$
\begin{gathered}
f=e+\sum_{j=1}^{m} d_{j} Y_{j} \\
\left.\widehat{\substack{i=1}}_{n}^{\left(n_{i}\right.}=b_{i}+\sum_{j=1}^{m} a_{i j} Y_{j}\right) \wedge \\
\widehat{i=1}_{n}^{\left(X_{i} \geq 0\right)} \wedge \widehat{j=1}_{m}^{\left(Y_{j} \geq 0\right)}
\end{gathered}
$$

- choose one Y_{J} with $d_{J}<0$
\Rightarrow pivoting on this Y_{J} can only decrease f (see next slide)
- no such $Y_{J} \leftrightarrow$ optimum has been found

Why pivoting on a Y_{j} with $d_{j}<0$ decreases objective function f

$$
f=e+d_{1} Y_{1}+\ldots+d_{J} Y_{J}
$$

- looking at the basic feasible solution (bfs) every parametric variable $\left(Y_{j}\right)$ is set to 0
- pivoting on such a variable (var. becomes basic) leads to an increase of this variable in the bfs: $Y_{j} \geq 0$
\Rightarrow a Y_{j} with negative d_{j} decreases f

The al gorithm

Exiting variable:

- we have to mai ntai n basic feasi bl e solved form
\Rightarrow all b_{i} 's have to be ≥ 0
\Rightarrow choose a X_{i} so that $-b_{I} / a_{I J}$ is a minimum of:

$$
M=\left\{\left.\frac{-b_{i}}{a_{i J}} \right\rvert\, a_{i J}<0 \text { and } 1 \leq i \leq n\right\}
$$

- $\mathrm{M}=\{\varnothing\} \leftrightarrow$ optimization problem unbounded

tiff Simplex Example

minimize 10- $Y-Z$ subject to

$$
\begin{array}{cc}
X=3-Y & \wedge \\
T=4+2 Y-2 Z & \wedge \\
X \geq 0 \wedge Y \geq 0 \wedge Z \geq 0 \wedge T \geq 0
\end{array}
$$

Choose variable Y, the first eqn is only one with neg. coeff $Y=3-X$

minimize 7+ $X-Z$ subject to

$$
\begin{aligned}
& Y=3-X \\
& T=10-2 X-2 Z \wedge \\
& X \geq 0 \wedge Y \geq 0 \wedge Z \geq 0 \wedge T \geq 0
\end{aligned}
$$

Choose variable Z, the 2nd eqn is only one with neg. coeff $Z=5-X-0.5 T$
minimize $2+2 X+0.5 T$ subject to

$$
\begin{gathered}
Y=3-X \\
Z=5-X-0.5 T \wedge \\
X \geq 0 \wedge Y \geq 0 \wedge Z \geq 0 \wedge T \geq 0
\end{gathered}
$$

No variable can be chosen, optimal value 2 is found

The al gorithm

starting from a problem in bfs form

repeat

Choose a variable y with negative coefficient in the obj. func.
Find the equation $x=b+c y+\ldots$ where $c<0$ and $-b / c$ is minimal
Rewrite this equation with y the subject $y=-b / c+1 / c x+\ldots$
Substitute $-b / c+1 / c x+\ldots$ for y in all other eqns and obj. func. until no such variable y exists or no such equation exists
if no such y exists optimum is found
else there is no optimal sol ution

H2
 The example

Basic feasible solution form circle minimize $0+0.5 S_{1}-0.5 S_{3}$ subject to

$$
\begin{array}{ll}
Y=3-0.5 S_{1} & -0.5 S_{3} \\
S_{2}=2 & -S_{3} \\
X=3 & -S_{3}
\end{array}
$$

Choose S3, replace using 2nd eq minimize $-1+0.5 S_{1}+0.5 S_{2}$ subject to

$$
\begin{array}{ccc}
Y=2-0.5 S_{1} & +0.5 S_{2} & \wedge \\
S_{3}=2 & -S_{2} & \wedge \\
X=1 & +S_{2} & \wedge
\end{array}
$$

Optimal solution: box

Content

- Optimization - what is that?
- The Simplex Algorithm - background
- Simplex form
- Basic feasi ble solved form / basic feasi ble solution
- The al gorithm
- Initial basic feasible solved form

Initial basic feasible solved form

idea:

- solve a different optimization problem
this optimization problem should have an initial basic feasi ble solved form, which:
- can befound trivially
- has an optimal solution that leads to an initial basic feasible solved form of the origi nal problem

Initial basic feasible solved form

add artificial variables and minimize on them:

$$
\begin{gathered}
f=\sum_{i=1}^{n} z_{i}: \wedge_{i=1}^{n}\left(z_{i}=b_{i}-\sum_{j=1}^{m} a_{i j} x_{j}\right) \wedge \\
\widehat{j=1}_{m}^{\left(x_{j} \geq 0\right)} \wedge \widehat{i=1}_{n}^{\wedge_{i}}\left(z_{i} \geq 0\right)
\end{gathered}
$$

Initial basic feasible solved form

to get basic feasi ble solved form:

$$
f=\sum_{i=1}^{n} z_{i}=\sum_{i=1}^{n}\left(b_{i}-\sum_{j=1}^{m} a_{i j} x_{j}\right)
$$

\Rightarrow solve this problem

I nitial basic feasible solved form

possi bl e outcomes:

- ($f>0$) \leftrightarrow original problem unsatisfiable
- $(\mathrm{f}=0) \wedge\left(z_{i \ldots . .}\right.$ parametric $) \leftrightarrow$ got a basic feasi ble solved formfor original problem
- $(\mathrm{f}=0) \wedge \neg\left(z_{i \ldots n}\right.$ parametric $) \leftrightarrow z_{i}$ must occur in such an equation:

$$
z=0+\sum_{i=1}^{n} d_{i}^{\prime} z_{i}+\sum_{j=1}^{m} a_{j}^{\prime} x_{j}
$$

Such an equation is no problem,

 because$$
z=0+\sum_{i=1}^{n} d_{i}{ }_{i} z_{i}+\sum_{j=1}^{m} a^{\prime}{ }_{j} x_{j}
$$

- if all $a_{j}^{\prime}=0 \rightarrow$ equation is redundant
- if one $a_{j}^{\prime} \neq 0 \rightarrow$ use according x_{j} for pivoting z out of basic variables (this mai ntai ns basic feasi ble solved form since $z=0+\ldots$)
\Rightarrow all z become parametric
$\xrightarrow[\sim]{H}$ The example

tiry The example

Original simplex form equations

$$
\begin{array}{cccc}
X & & -S_{2} & =1 \wedge \\
X & & & =S_{3} \\
=3 \wedge \\
-X+2 Y-S_{1} & & =3
\end{array}
$$

With artificial vars in bfs form:
$A_{1}=1-X \quad+S_{2}$
$A_{2}=3-X$
$-S_{3}$
$A_{3}=3+X-2 Y-S_{1}$
Objective function: minimize
$A_{1}+A_{2}+A_{3}$
$=7-X-2 Y-S_{1}+S_{2}-S_{3}$

Tiry The example

Problem after minimization of objective function

minimize $A_{1}+A_{2}+A_{3}$ subject to

$$
\begin{array}{cccccc}
Y & =3-0.5 S_{1} & -0.5 S_{3} & -0.5 A_{2} & -0.5 A_{3} & \wedge \\
S_{2} & =2 & -S_{3}+A_{1} & -A_{2} & \wedge \\
X & =3 & -S_{3} & -A_{2} &
\end{array}
$$

Removing the artificial variables, the original problem

$$
\begin{array}{ccc}
Y=3-0.5 S_{1} & -0.5 S_{3} & \wedge \\
S_{2}=2 & -S_{3} & \wedge \\
X=3 & -S_{3} & \wedge
\end{array}
$$

Simplex solver

finding a basic feasible solution is exactly a constrai nt satisfaction problem

\Rightarrow efficient constrai nt solver for linear inequalities

Cycling

Problem:

- if for one of the basic variables is val id: $X_{i}=0+\ldots$, a pi vot could be performed which does not change the corresponding basic feasible solution
\Rightarrow danger of pivoting back

Solution:

- use eg. Bland's anti-cycling rule (al ways select candi date with small est index: x_{2} instead of x_{4})

Summary

We have seen that optimisations of linear real arithmetic constrai ints play an important role in many applications.

The Simplex Method which was introduced here provides a very efficient al gorithm to determine whether there exists an optimal sol ution to linear real arithmetic constraints and if there exists one, to compute it.

Literature

- books:

George B. Dantzig, Mukund N. Thapa
 "Linear Programming I: I ntroduction"
 Springer Verlag

Kim Marriott \& Peter J. Stuckey
"Programming with Constraints: A n I ntroduction"
MIT Press

Literature

- examples are taken from a presentation of Marriott \& Stuckey and could be accessed via internet:
http://www.cs.mu.oz.au/-pis/book/course.htm
- this presentation in the net:
http://www-lehre.inf.uos.de/-sbitzer/clp

