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Abstract. Real-time decision making based on visual sensory informa-
tion is a demanding task for mobile robots. Learning on high-dimensional,
highly redundant image data imposes a real problem for most learning al-
gorithms, especially those being based on neural networks. In this paper
we investigate the utilization of evolutionary techniques in combination
with supervised learning of feedforward nets to automatically construct
and improve suitable, task-dependent preprocessing layers helping to re-
duce the complexity of the original learning problem. Given a number of
basic, parameterized low-level computer vision algorithms, the proposed
evolutionary algorithm automatically selects and appropriately sets up
the parameters of exactly those operators best suited for the imposed
supervised learning problem.

1 Introduction

A central problem within the field of robotics is to appropriately respond to
sensory stimulation in real-time. At this, visual sensory information becomes
more and more important. When applying techniques of machine learning to
such tasks, one faces a number of recurring problems. In most cases it is simply
not feasible to feed the whole image information directly into a neural network
or into any other learning algorithm. Often a (hand-coded) computer vision
subsystem is used to preprocess the images and extract useful visual features.
Usually, the developer himself specifies such a restricted set of features and the
structure of an intermediate data representation. By using the resulting low-
dimensional feature vectors and the intermediate data representation, learning
becomes possible.

Since there is still no all-purpose domain-independent computer vision sys-
tem, adapting or redesigning the computer vision subsystem for a new problem is
a time consuming and expensive task. But compared to finding a general-purpose
computer vision subsystem and a transferable intermediate data representation
it is generally easier and more reliable to build highly specialized, task-dependent
preprocessing layers. Accordingly, we believe computer vision subsystems should
concentrate on extracting only task-relevant features.



What features are needed to be extracted in order to be fed to the learning
algorithm, is highly dependent on the task itself. Therefore, when specifying the
intermediate data representation and designing the computer vision subsystem,
it is absolutely necessary to consider not only the input images but also the
desired output signals.

To give an example (see experiment 2): Consider a set of some images con-
taining a dice in front of a uniform background and others containing only the
empty background. If the task was to detect the presence or absence of the dice
in a particular image it would at least be necessary to look for a rectangular
or quadratic area and return a boolean value. If the dice should be grabbed
by a robot-arm the detected feature (“quadratic area”) could still be the same.
Additionally it would however be necessary to calculate its center of gravity or
its bounding box. Finally, if the task was to read the dice it would be necessary
to detect a completely different feature, namely the markers on it. However, in
this task the position of the features is unimportant and does not need to be
considered. Encoding their individual absence or presence is sufficient. It does
not take much effort to come up with scenarios in which an extraction of even
more features is needed.

This example clearly shows that different applications require different sets
of features to be extracted. Searching the images for prominent or interesting
features without considering the application of the extracted information can not
give the optimal solution to a task. The approach presented in this paper, there-
fore is to treat the learning of both the preprocessing and the control subsystem
as a whole, always considering both input and desired output.

The algorithm presented here, is able to directly solve a supervised learning
problem on visual input without any further information or help from the out-
side. We have chosen to use a hybrid solution that comprises an evolutionary al-
gorithm (outer loop) and the supervised training of feedforward nets (inner loop).
The candidate solutions (individuals of the evolutionary process) are composed
of a neural network realizing the decision making process and a specialized and
highly task-dependent computer vision subsystem for preprocessing the image
data. Candidate preprocessing subsystems are automatically constructed during
the evolutionary process. The primitives forming the computer vision subsys-
tem are more or less complex, highly parameterized, hand-coded programs, each
realizing a feature detector, global operator or other low-level computer vision
algorithm.

2 Related Work

To tackle the problem of feature selection a considerable amount of methods
has been developed. Statistical methods based on principle component analysis
(PCA) (for example [5], [8], [9]) are able to remove redundant features with a
minimal loss of information. One probelm of such methods is that they are often
computationally expensive. Locally linear embedding (LLE) is a non-linear non-



iterative unsupervised method that can be used for dimensionality reduction
[15]. LLE can be extended to data with class information available [13], too.

Martin C. Martin has used genetic programming to construct visual feature
extracting programs for a computer vision subsystem of a robot solving a simple
navigation task [11]. Instead of considering the task as a whole, the subtask to
be solved by the visual feature extractors and their correct output was explicitly
specified.

Tony Belpaeme proposes a genetic algorithm for the evolutionary construc-
tion of visual feature extractors not needing any information about the target
output of these extractors [2]. According to Belpaeme it would be possible to
measure the fitness of the extractors as their performance in the task itself. But
for performance reasons he proposes to use the entropy of the resulting feature
vectors instead. Belpaeme does not provide any information about the general-
ization behavior of the algorithm or its performance in real tasks.

The Schema Learning System (SLS) proposed by Bruce A. Draper [6] is able
to learn special-purpose recognition strategies under supervision using a library
of executable procedures. The parameters of the computer vision algorithms in
the library, however, have to be set by hand for every different task [7].

Bala et al. [1] use a genetic algorithm to search for a subset of user provided
visual features in an object classification task. A classifier is constructed by
inducing a decision tree using these feature subsets and a training set of labeled
images.

In [3] Heinrich Braun and Joachim Weisbrod present a hybrid algorithm
(ENZO) evolving the topology of feedforward nets. As ENZO is permitted to
change the input layer, it is able to select features and reduce the dimensionality.
The main fitness criterion is the performance of the evolved nets during a “local”
training phase. The algorithm was later combined with reinforcement learning
to solve complex learning problems [4].

3 Description of the Algorithm

3.1 Evolution of Candidate Solutions

The navigation and classification tasks examined have all been formulated as
supervised learning problems: Given a training set

P = {(Bp; yp) ∈ [0, 255]3
k×l

× [0, 1]m | p = 1, ..., n}

of n training patterns (Bp; yp) the task is to find a control program minimizing
an error term. We have chosen to use the “total sum of squares” (tss)

E =

n∑

p=1

m∑

j=1

(opj − ypj)
2

of the difference between the output op of the control program and the target
yp. In all of these tasks, the input is a single multi-spectral image encoded in



a k × l-matrix B. The entries of the matrix are color values given in the RGB
color space.

In order to minimize the error term an evolutionary algorithm is proposed.
The algorithm constructs and modifies complex candidates of a predefined ar-
chitecture.

The Structure of the Individuals. The evolved candidates (individuals xi

of the population Xt) consist of two distinct subsystems. The layer processing
the raw image matrices is a low-level computer vision subsystem. The control
subsystem forming the second layer receives its input data from this computer
vision subsystem. It performs the output generation (action selection) based on
a more compact representation of the original data.
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Fig. 1. The general structure of a candidate. The candidate is composed of the com-
puter vision sublayer and a downstream neural network realizing the control subsystem.
The computer vision subsystem consists of smaller building blocks (operators) that all
access the image matrix directly. Their individual output is concatenated and returned
as the output of the computer vision subsystem

The subsystem realizing low-level vision tasks is a set of vertically ordered
smaller subsystems that will be called “operators” throughout this text. These
operators all realize a parameterized (by parameter vector p) function hp(B) =
v returning a q-dimensional vector v for every given image matrix B. These
operators could be simple filters like Gaussian blur, point-of-interest detectors
like corner detectors or even complex programs like segmentation algorithms.
The operators all reduce the input to a representation of the image much simpler
and more compact than the image itself. This could be realized by (preferably)
reducing the dimension or by choosing a “simpler” but still iconic encoding of
prominent features (like edge or region maps) or by combining both of these
methods.



Since these operators are ordered in parallel (Fig. 1) they all access the image
directly and do not consider the output of each other.

Generally the operators employed in this work need at least one parameter
to appropriately adapt their behavior to the circumstances. Some operators may
even change their behavior substantially according to different parameter set-
tings. Each operator returns a vector of constant length that is concatenated to
the output vectors of the other operators to form the final output of the image
preprocessing layer. The length of the output vector is allowed to change only
when the parameters are changed. Besides the parameters influencing the be-
havior of the operators, each operator has some boolean parameters to switch
the output of a specific feature on or off.

Concluding the image processing layers of the candidates may differ in their
composition of operators, in the setting of parameters controlling the internal
behavior of the operators and in the selection of output values returned.

The control layer is formed by a simple feedforward net. The dimension of
the input layer is determined by the size of the image processing layer’s output
vector, whereas the dimension of the output layer is determined by the dimension
of the target vector provided with the training patterns. The internal topology
of the net, however, is a free variable. Because the topology of a neural net has
a major impact on its learning behavior and has to be chosen carefully it will be
subject to evolutionary optimization too.

The Evolutionary Algorithm. Starting with a random initialized popula-
tion, an (µ, λ)-evolutionary strategy with the addition of elitism is followed. The
implemented algorithm comprises five different steps: Selection, recombination,
mutation, evaluation and reinsertion (see Fig. 2).

During the selection phase, µ parents are chosen randomly for mating. The
probability P (xi) of selecting individual xi as the k-th parent is proportional to
its fitness:

P (xi) =
f(xi)∑

xj∈Xt
f(xj)

.

During the recombination phase every two “neighboring” individuals x1 and
x2 are recombined to form an offsprings x

′ by randomly choosing a subset of
operators from the original operators of x1 and x2. The network topology is
passed unchanged from the first individual.

Afterwards a mutation operator is applied to the resulting offsprings. A ran-
dom number of entries of the computer vision operators’ parameter vectors and
the topology of the neural network are mutated by adding a zero-mean gaussian
random variable. The chance of changing the entry pi of the parameter vector p

is set to 0.1 in all experiments.
Every newly formed individual is evaluated according to the fitness function

described in the next section.
Finally, the fittest λ childrens replace the λ worst individuals of population

Xt to receive the new population Xt+1. This is a combination of elitism and
fitness based reinsertion.



outer loop

inner loop
Preprocessing

Training

Error

Selection

Recombinaton

Mutation

Reinsertion

Evaluation

Fig. 2. The different steps of the algorithm. The outer cycle consists of the five steps
of the evolutionary algorithm. The inner evaluation cycle evaluates each candidate by
using its computer vision subsystems to obtain the preprocessed input data and by
training the neural network several epochs on this data. The observed training and
testing error are used to calculate the fitness

It should be noted that although the evolution of good solutions typically
takes several hours (when not parallelized), the basic operators and the resulting
programs are able to analyze the input and calculate an output in real-time on
present personal computers.

Training the Net to Measure the Fitness. The images B of the training
patterns (Bi; yi) are analyzed with each candidate’s vision subsystem to form a
set of training patterns (h(Bi); yi) suitable for the input layer of its neural net-
work. The net is trained on the resulting pattern set using resilient propagation
(Rprop [14]) for a specific number of epochs. Afterwards the neural network is
evaluated on the testing set. The tss on the training and testing set are both
normalized to yield a fitness value between 0 and 1 (bigger means better). The
final fitness of the candidate is the weighted sum of these two values and some
additional, less important and lower weighted components that may reward good
runtime performance or smaller memory consumption.

In all experiments discussed in this paper, the fitness has been a weighted
sum of training error, testing error (smaller gives higher fitness) and of three
lower weighted factors penalizing higher numbers of hidden layer neurons and
connections, bigger input layers and the runtime needed to process one image by
the candidate’s vision subsystem. These factors have shown to produce efficient
candidates with rather small networks and a good generalization behavior.



3.2 Building Blocks of the Computer Vision Subsystem.

From the huge number of well studied operators, detectors and algorithms, we
have selected and adapted or implemented five algorithms to be used in the ex-
periments. These operators are: a corner-detector employing the SUSAN prin-
ciple [16], an operator returning a single image from the gauss pyramid, a his-
togram operator, returning n 2-dimensional UV histograms of n non-overlapping
image partitions (inspired by [17]), a region-growing algorithm known as “color
structure code” (CSC, [12]) and the operator with the most parameters, a seg-
mentation algorithm based on the lower layers of the CVTK library [10].

Whereas two operators return iconic representations (of reduced dimension-
ality), the other operators return “meaningful” symbolic representations. For
example the CVTK and CSC operators both return abstract descriptions of
uniformly colored image regions containing information such as color, coordi-
nates of the center of gravity, area, bounding rectangle and compactness of the
regions found.

Each operator needs at least one parameter to be set properly; for example:
the level of the gauss pyramid to return or the maximum color-distance being
used by the CSC algorithm to decide, whether or not two neighboring pixels
belong to the same region.

Since the detailed description of all algorithms and parameters would go
beyond the scope of this paper, we will exemplarily describe in detail the CVTK
operator.

This operator uses a given set S of samples s = (srgb, sc) = (r, g, b, c) of the
discrete “classification” function f : I3 7→ 0, 1, .., N that assigns a class label c

to every rgb-value srgb ∈ I3. Implementation dependent, the values of the red,
green and blue channel are from the set I = {0, 1, ...255}.

The algorithm uses a simple nearest-neighbor classification to segment the
image. The label of each pixel bij of the image B is determined by finding the
“closest” sample sclosest = arg minsrgb

d(srgb, bij) and assigning its class label
sc iff the distance is smaller than a threshold t. If there is no sample having a
distance smaller than t the class label of the background (0) is assigned to bij .

The distance d is the Euclidian distance between the color values of the pixel
bij and the sample s after transforming both to one of four possible color spaces
(RGB, YUV, UV, CIE L*a*b*). The color space can be chosen by setting a
parameter of the operator.

After classifying the whole image pixel by pixel, neighboring pixels of the
same color class are connected to regions. Internally, the algorithm uses a contour
based region description to calculate region features like center of gravity, area,
bounding rectangle or compactness. Finally the algorithm returns a list of n

region descriptions. By setting boolean output parameters, the user can specify
what features each description should contain. Table 1 lists all parameters of the
CVTK operator.



Table 1. Parameters of the CVTK operator. Some parameters are influencing the seg-
mentation process itself, whereas a second group of parameters selects what properties
should be returned

parameter type multitude description

algorithm max classes int 1 number of different color classes

color space int 1 encodes the color space to use

(r,g,b,c) int4 1..n labeled color samples

t double 1 distance threshold

min size double 1 minimum size of regions

output regions out int 1 regions per color class to return

order boolean 1 order according to area

area boolean 1 return the area

center boolean 1 return the center of gravity

class boolean 1 return the class label

compactness boolean 1 return the compactness

bounding box boolean 1 return corners of bounding box

4 Results

The algorithm has been tested on two classification tasks and on one robot-
navigation experiment. We have not used any artificial images but only real
world images captured by a digital camera under typical office-lighting con-
ditions. There have been absolutely no efforts to reduce shadows or to en-
sure uniform lighting conditions. The image sets can be found at http://www-
lehre.inf.uos.de/˜slange/master/ .

Experiment 1: Subtraction of Colored Gaming Pieces. The images show
different settings of up to eight red and blue gaming pieces on a white back-
ground. There are always at least as many blue as red pieces and never more
than four pieces of the same color in the image frame. The task is to calculate
the difference between the number of blue and red pieces and to label the im-
ages accordingly. There is an additional testing set that is used after finishing
the evolution to judge the generalization performance of the whole evolutionary
process – in contrast to the net’s testing error that is calculated on the first
testing set and used to guide the selection of the individuals. The training set
contains 98 images, the testing set 27 images and the second testing set 9 images
(320× 240 pixel).

Experiment 2: Reading a Dice. In this setup a dice was filmed from a con-
stant camera position. The images have to be classified into 6 classes according
to the number of markers on the upper side of the dice. Again, there are three
sets of equally sized (160×120 pixel) and correctly labeled images. The training



set consists of 45 images, the testing set of 12 and the additional testing set con-
tains 15 images. The second testing set also contains 5 images of a completely
different and slightly bigger dice than the dice used during the evolution.

Experiment 3: Driving to the Ball. In this simple navigation task, a camera-
equipped robot has to drive to a ball that is positioned somewhere in the sur-
rounding area. There are no obstacles between the robot and the ball. The
training and testing data is acquired by hand-steering the robot to the ball with
a cableless joystick. The task is solved several times by a human. During this
process the program stores a few hundred captured images together with the
human provided control signal to form the training and testing sets. Afterwards
a controller is evolved on this training data and finally tested in the real envi-
ronment.

All experiments have been conducted with an initial population size of 60,
µ = 20 and λ = 15. The evolutionary process was always stopped after 200
epochs.

As a “proof of concept” the subtraction experiment has been solved first
by allowing the candidate computer vision subsystems to contain only a single
CVTK operator. This operator has a really huge parameter space and has to be
set up carefully since the provided sample colors completely determine the result
of the segmentation process. Due to changing lighting conditions and shadows
the task of finding good sample colors is very difficult even for a human.

Fig. 3. From top to bottom, from left to right: Orinal image of the testing set of the
subtraction task and the region image produced by the single cvtk operator of the best
individual after t = 0, t = 12, t = 25, t = 50, und t = 150 epochs



The progress made during the evolution in extracting the interesting regions
is visualized in fig. 3. While the image processing is not substantially improved
after the 50th epoch, the other settings keep improving.

Actually, in the very first run of the experiment, the best individual after
200 epochs adapted a quite intelligent and efficient strategy. Inspecting the pa-
rameter settings and generated intermediate representations, we have found the
operator to not only robustly find the gaming pieces but also to return the small-
est feature vector possible: The individual discards any information about the
position, size and area and only considers the color of the regions found. The
feature vector passed from the computer vision subsystem to the learning sub-
system has only eight “boolean” entries – four for each of the two foreground
color classes. This small representation is possible because the necessary minimal
size of regions was set appropriately during evolution to filter out all false posi-
tive detections, that are consistently smaller in size than the correctly detected
regions.

In all of the five repetitions we have performed with this setup, the best
individual after 200 epochs always classified at least eight of the second, unseen
testing set’s nine images correctly. As can be seen in fig. 4 the training error of the
best individual is very low right from the beginning. This is no suprise because
a sufficiently big feedforward net is easily trained to memorize a relatively small
training set. Obviously, it is the generalization error that has to be minimized
during the evolutionary process.
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Fig. 4. Results of training a single CVTK operator in experiment 1. The fitness of
the population and its best individual improve parallely (left). The Hamming Dis-
tance measured for the best individual continously decreases on the testing set (right).
The Hamming Distance has beend divided by the number of patterns in order to be
comparable

Afterwards, the algorithm was tested in the first two experiments with all
operators active. The classification results listed in tab. 2 show the resulting
solutions to perform clearly above chance.



During the experiments, the algorithm was observed to have problems in the
first task due to some operators dominating the entire population too early. This
happens, because the population size – due to the computational cost – has been
chosen to be relatively small and some operators may give notably better results
than others during early stages of the optimization. If those “early starting”
operators are not the operators that give the better results in the long run, the
problem might occur.

This problem might be circumvented by simply training the different oper-
ators separatly in the early stages of the evolutionary process. Table 2 shows
that evolving the operators for the first 30 epochs separately solves the observed
problems effectively.

Table 2. Percentage of the correct classifications of the images of the two testing sets
by the best individual after 200 epochs of evolution. The evolution has been started
for 0, 10, 30 epochs with isolated subpopulations each containing only one type of
operators

Subtraction Dice

testing set testing set 2 testing set testing set 2

no isolation 96% 44% 100% 100%

10 epochs isolated 96% 56% 100% 93%

30 epochs isolated 100% 100% 100% 100%

Finally, the algorithm was tested successfully in the robot-navigation task1.
Although the ball is nearly always reached, the robot drives very slowly at some
positions. We believe this behavior results from inaccurate or contradictory con-
trol signals in the training pattern rather from an error in the evolved computer
vision subsystem.

One interesting observation from the inspection of the vision systems con-
structed is that instead of detecting the whole area of the ball, some subsystems
only search for an equatorial stripe. The center of the detected stripe always
closely coincides with the center of the ball. The advantage of extracting this
smaller region seems to be that problems due to highlights in the upper re-
gion of the ball and shadows in the lower half could be effectively circumvented.
Compared to the subsystems which considered the whole area of the ball, the
subsystems seem to be more robust against noisy pixels in the background and
therefore had to sort out fewer false detections. In spite of this obvious difference
in the preprocessing layer we were not able to detect any significant differences
in the behavior of the robot.

1 Multimedia files of both the training and testing phase can be found at http://www-
lehre.inf.uos.de/˜slange/master/.



5 Conclusion

We have introduced an elegant algorithm that is able to directly learn different
tasks on visual input. In contrast to earlier work, it does not need any a priori
knowledge neither about features to be extracted nor the layout of an intermedi-
ate representation. It is able to construct specialized, task-dependent computer
vision subsystems that enable a learning algorithm to successfully learn the task.
Moreover it finds good parameter settings for the employed operators even in
huge parameter spaces. The generalization performance of the resulting strate-
gies is clearly above chance. As yet, we have only used tasks having a “color-
based” solutions. We plan to implement other operators and to try different and
more difficult tasks in the future.
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Supervised locally linear embedding. In: Proc. Joint Int. Conf. ICANN/ICONIP
2003, Lecture Notes in Computer Science, vol. 2714, Springer Verlag, Berlin Hei-
delberg New York (2003) 333-341



14. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: the Rprop algorithm. In: Proceedings of the ICNN, San Francisco (1993)

15. Roweis, S. T., Saul, L. K.: Nonlinear dimensionality reduction by locally linear
embedding. In: Science, 290(5500) (2000) 2323-2326

16. Smith, S. M.: A new class of corner finder. In: Proc. 3rd British Machine Vision
Conference (1992) 139-148

17. Steels, L., Kaplan, F.: AIBO’s first words. The social learning of language and
meaning. In: Gouzoules, H. (ed) Evolution of Communication, vol. 4, nr. 1, Ams-
terdam: John Benjamins Publishing Company (2001)


