
Solving Proportional Analogies by
Application of Anti-Unification modulo
Equational Theory

Bachelor’s Thesis

Stephan Weller <stephan.weller@mi.uni-erlangen.de>

Cognitive Science Program

University of Osnabrück

Supervised by Prof. Dr. Ute Schmid, University of Bamberg
Co-Supervised by PD Dr. Helmar Gust, University of Osnabrück

June 28, 2005

mailto:stephan.weller@mi.uni-erlangen.de

Abstract This thesis applies the theory of Anti-Unification modulo Equa-
tional Theory (E-Anti-Unification, E-Generalization) to proportional analo-
gies in the string domain. Human solving of proportional analogies of the
form A : B :: C : D (read: A is to B like C to D, where A,B and C are
given) is modelled by an approach originally developed by Heinz [1996], re-
fined in Burghardt [2005]. The goal is to generalize the common structure of
the terms given and infer every possible value for D. This is made possible
by the use of regular tree grammars instead of single terms. Thus, a formally
sound and powerful approach to modelling human solving in this domain is
achieved. Some heuristics’ for selecting terms from the computed regular
tree grammar are proposed. The selection of a heuristics which comes clos-
est to human solving is discussed, however a final answer to this question
can only be given by empirical investigations.

1

Contents

1 Introduction 3

2 Analogical Reasoning - some classical approaches 4
2.1 ANALOGY . 5
2.2 Copycat . 5
2.3 Structural Information Theory 7

3 Introduction to Anti-Unification 7
3.1 Unification . 8
3.2 Universal Unification . 8
3.3 Syntactic Anti-Unification . 9
3.4 E-Generalization . 10
3.5 An Example . 11
3.6 Drawbacks . 12
3.7 Other applications of E-Generalization 13

4 Applying E-Generalization to solve proportional analogies 14
4.1 Algorithms for E-Generalization 14

4.1.1 Constrained E-Generalization 14
4.1.2 Unconstrained E-Generalization 15

4.2 Solving proportional analogies 17
4.3 Serial solving of similar analogies 18
4.4 Enumerating regular tree grammars 19
4.5 Extended result selection . 20

5 Implementation 21

6 Conclusion and further work 22

Bibliography 25

A Program installation and usage 26
A.1 Availability . 26
A.2 ML requirements . 26
A.3 Installation . 26
A.4 Usage . 26

B Example Grammar for abc : abd :: ghi :? 27

2

List of Figures

1 Example for Unification . 8
2 Example for syntactic Anti-Unification 9
3 Algorithm for syntactic Anti-Unification of two terms 10
4 Definition of regular tree grammars as used by Burghardt

[2005], freely adopted . 11
5 Equational theory for Example 7 12
6 Regular tree grammars for Example 7 wrt. to the theory 5 . . 12
7 Example for E-Generalization 13
8 Lifting algorithm, from Burghardt [2005] 15
9 Algorithm for grammar intersection 16
10 Algorithmic computation of Nmax 17
11 Computation of Universal Substitutions, from Burghardt [2005] 17
12 Solving a proportional string analogy 18

1 Introduction 3

1 Introduction

The role of analogy-making in human reasoning is not well understood.
However, it is generally assumed, that analogies do play an important role
in human cognition and knowledge acquisition.

Finding an analogy is a process that requires abstraction, which is one
of the core features that constitute intelligence. Thus, reasoning by analo-
gies is one of the fields that need to be investigated to understand human
intelligence as such.

Analogical reasoning has been a subject to intense study in psychology,
Artificial Intelligence, Cognitive Science and other fields. A general intro-
duction to Analogical Reasoning and various types of analogies can be found
in section 2.

Some of the classical approaches include analogies in verbal settings
(Lungs are to humans as gills are to fish, cf. Evans [1968] and O’Hara
[1992]). I will describe some classical approaches in more detail in section 2.
The main focus will be on proportional analogies, as the main topic of this
thesis is solving proportional analogies algorithmically.

Hofstadter was the first one to investigate proportional analogies in string
domains (Hofstadter and the Fluid Analogies Research Group [1995]). The
type of analogies he investigated is exactly the type of analogies used in my
thesis. The typical form of such a “string analogy”would be abc : abd :: ghi :
?, with ghj being the most probable answer. Hofstadter’s Copycat-Model
will be described in section 2.2.

To compute an answer to a proportional string analogy, following Schmid
et al. [2004], it is necessary to find a description d for each part A,B, C, D
of the analogy A : B :: C : D, such that µ(f(d(A))) = µ(d(B)) = d(D) =
f ′(d(C)) = f ′(µ(d(A))), where µ is a mapping from one domain to another
and f and f ′ are functions to transform (in our case) strings to new strings,
i.e. they are representing the ’:‘-operator.

To achieve this aim, I follow the approach of Schmid et al. [2004] and
apply the method of Anti-Unification modulo Equational theory, developed
by Burghardt and Heinz [1996] and Heinz [1996]. I use the refined and more
elegant version of their work found in Burghardt [2005]. By this, I achieve
a method of extracting from the common structure between A and C a
mapping that can be applied to transform B to D and thereby solve the
analogy task.

The idea behind E-Generalization and Anti-Unification in general will be
described in section 3. Afterwards I apply the method of E-Generalization
to proportional analogies (section 4). Finally, I describe my implementation
used to solve some exemplary proportional analogies (section 5).

Section 6 contains a conclusion of the thesis as well as a list of further
work.

2 Analogical Reasoning - some classical approaches 4

2 Analogical Reasoning - some classical approaches

The basic idea of an analogy is the use of old, known information to explain
new facts or experiences, or to transfer knowledge to a new, similar situation.
In human cognition, this is an every-day phenomenon, that occurs all of the
time.

Much research has been done in psychology, Artificial Intelligence, and
other fields concerning various kinds of analogies, reaching from examples
like analogies at court used in legal reasoning to analogies in poems, or even
metaphors, which some authors consider to be a form of analogy.

Analogies often occur in natural language (“Gills are to fish as lungs
are to mammals”), but can also be used in completely different fields. For
example, Davies and Goel [2001] use analogies in problem solving. Subjects
were presented with one solved problem about a fortress. All roads to the
fortress were mined in a way such that the mines would go off if there were
too many people on the same road. Thus, a general attacking the fortress
split up his army into small groups to attack the fortress. Afterwards, the
subjects were presented with a new problem, that showed some analogous
features to the old problem. A brain tumor was to be removed by radiation
treatment, and the radiation would harm healthy tissue on its way, when
it was too strong. The subjects were asked to solve this problem and were
usually able to use the fortress problem to produce an analogous solution,
i.e. to target the tumor with many low-level rays from various directions.

At a more formal level, two types of analogies are of special interest. The
probably most basic type of an analogy is a so-called proportional analogy.
This kind of analogy has the form “A is to B, like C is to D”. The example
in natural language quoted before is of this form. To make formal treatment
easier, a special type of proportional analogies has been investigated, namely
proportional analogies in the string domain. In this case, A,B, C, and D
are strings. The analogy is usually given as a problem that is to be solved.
This is done by specifying A,B, and C and asking for D. The main focus of
this thesis is to show an algebraic method to compute D from A,B, and C.

Our running example will be the following:

abc : abd :: ghi :?

It is to be read like “abc is to abd like ghi is to what?”. The solution
most likely given by humans would be ghj, however, other solutions are
possible, for example one could argue that ghd is the answer, as the last
letter is replaced by d on both sides. It is typical for proportional analogies
in general, that multiple possibilities exist rather than one unique solution.

The probably most important classical approach to proportional analo-
gies in the string domain is Hofstadter’s Copycat model, which will be de-
scribed in section 2.2.

2 Analogical Reasoning - some classical approaches 5

Another important form of analogies are predictive analogies. Such
analogies occur for example in teaching situations and are the most im-
portant form of analogical reasoning. The most prominent example is the
so-called Rutherford-analogy. In the model of the atom from Ernest Ruther-
ford, the atom is seen like a planetary system. The electrons are revolving
around the nucleus, which is analogous to the planets revolving around the
sun. This example was investigated by Gentner [1983].

There is an approach to solve predictive analogies in an algebraic way,
which uses the same method, namely Anti-Unification, as this thesis uses to
solve proportional analogies. It is called heuristic-driven theory projection
and can be found in Gust et al. [2004].

2.1 ANALOGY

One of the very early approaches to model analogies is Thomas Evans’ pro-
gram Analogy (cf. Evans [1968]). It used a microdomain of geometrical
figures found in some intelligence tests. All tasks were of the form of a pro-
portional analogy. The answer was not to be given but to be selected from
a list of some possibilities. A task would contain pictures A,B, C and 1− 5
and the question would be A is to B like C to 1,2,3,4 or 5?. The figure B
was always derived from A by some transformation like moving, deleting or
replacing some object or the like. Analogy then selected the answer from
the given list of five candidates. The selection was based upon an ordering
of the five possibilities.

The pictures were given to Analogy in the form of Lisp data-structures
describing geometrical units like lines, curves and dots. Analogy built its
own representations from the given pictures.

The processes of building up the representations and computing the rank
of the five possibilities were in separate stages, which might be seen as a
disadvantage, as it was impossible to review decisions in the representation
stage while computing the solution.

Although Evans’ model was rather primitive compared to more recent
approaches, it is still an interesting approach to analogical reasoning, which
was unfortunately not really continued by any follow-up projects.

2.2 Copycat

The Copycat model was developed by Hofstadter already in 1983 (cf. Hofs-
tadter and the Fluid Analogies Research Group [1995]). Copycat is a com-
puter program which was supposed to find “insightful analogies, and do so
in a psychologically realistic way”. Hofstadter calls it a “model of mental
fluidity and analogy making”. The domain used for the Copycat project is
the string domain, however Hofstadter claims that the architecture models
fluid concepts in general and that the microdomain of Copycat was designed

2 Analogical Reasoning - some classical approaches 6

to model other domains (e.g. a successor relation in the string domain for
any non-identity relationship). The goal of Copycat is clearly not research
in the string domain but rather exploration of general issues of cognition.

At the core of the Copycat architecture lies the idea of “conceptual slip-
page”. Hofstadter uses this term to describe that concepts relatively close
to each other may swap their roles when under conceptual pressure. The
concept“predecessor”might for example slip to“successor”when the context
forces it. This might for example be used to explain that a result might slip
from abc to cba.

The Copycat architecture consists of three major components called slip-
net, workspace and coderack.

The slipnet can be thought of as something like a long-term memory of
Copycat. It consists of all permanent concept types, but no instances of
those. The distances between those concepts in the slipnet are variable, and
determine how likely conceptual slippage is.

The workspace is something like a short-term or working memory con-
taining instances of the concepts stored in the slipnet, which are combined
into temporary perceptual structures.

The Coderack is something like an agenda storing agents that want to
carry out tasks in the workspace. It is now very important that agents are
selected stochastically from the coderack, not in a determinate order.

Hofstadter claims that Copycat has one main advantage over most other
models. Whereas most models concentrate on a mapping from a source
problem to a target problem. The representation of this source and target
is usually given to this models. In contrast to this, Copycat focuses on the
construction of representations for source and target. Thereby, Copycat even
allows for interaction between this construction and the mapping process.
Thus, Hofstadter claims, Copycat integrates high-level perception and the
mapping of concepts.

However, in my point of view, there is one big disadvantage not only of Copy-
cat, but also of other, similar models. The perception, and also the mapping
between concepts may be modelled adequately by such an approach. But
what is missing, is the abstraction occurring in the process of solving a pro-
portional analogy. Basically, when Copycat, or another system, has solved
an analogy and is then given a new, but similar one, the process of solving
the second analogy works exactly as the one for the first analogy. This is of
course not true for human solving of proportional analogies. In humans, ab-
straction necessarily occurs in drawing analogies. However, no model known
to me incorporates this abstraction in the process of drawing analogies. As
we will see later on, one big goal of this thesis is to avoid a direct mapping
approach and rather use an indirect mapping via abstraction, such that the
abstraction will be a byproduct of the process of solving analogies.

Hofstadter seems to attach great importance to his stochastic selection

3 Introduction to Anti-Unification 7

procedure, however, in my opinion this is another shortcoming of Copycat.
Humans, asked to solve proportional analogies, will usually be able to explain
why they have selected a certain answer and not another one. Provided that
a human subject answers seriously, he would always be able to give some
kind of “rule”, that leads to the selection of a result (although in some cases
there might be problems to verbalize this rule). In my opinion, a stochastic
procedure can in this case not contribute to our understanding of human
cognition.

2.3 Structural Information Theory

Leeuwenberg [1971] first introduced Structural Information Theory (SIT), a
coding system for linear one-dimensional patterns. Perceptual structures are
represented by three operators named iteration, symmetry, and alternation.
Iteration is supposed to reflect the repetition of something, for example
Iter(xy, 3) := xyxyxy. Symmetry may occur in two variants, odd and
even, and describes the reversed repetition of a term t after a second term
s. An example would be Symeven(xyz, ()) = xyzzyx and Symodd(xy, z) =
xyzyx. Alternation may occur in a left and a right variant. It describes
the interleaving of a term into a list of terms, such as Altright(a, (x, y, z)) =
axayaz and Altleft(a, (x, y, z)) = xayaza.

On those operators, information load is introduced. This information
load is supposed to describe how complex the application of an operator is.
Leeuwenberg claims that the descriptions using the least information load
correspond to perceptual gestalts (The notion “gestalt” is quite common
in cognitive psychology. For an introduction, see for example Goldstein
[1980]). He therefore claims that the gestalt principle can be explained by
even simpler principles, such as his information load.

A more formal version of Structural Information Theory can be found
in Dastani et al. [1997]. Here, an algebraic version of SIT is defined and
proportional analogies are formalized upon it. Even some computational
modelling of proportional analogy is done.

3 Introduction to Anti-Unification

This chapter will deal with Anti-Unification, which will constitute the core
part of our approach to solving proportional analogies.

To understand the concept of Anti-Unification, I will shortly introduce
the term of unification, which is widely used in Computer Science, especially
in logical programming, and in other fields. I will then explain, how usual,
syntactic Anti-Unification works, and finally, how Anti-Unification can be
extended by an equational theory. It is then called E-generalization.

3 Introduction to Anti-Unification 8

3.1 Unification

When unifying two (or more) terms, the aim is to compute the most general
unifier (MGU), i.e. the most general term, such that both terms can be re-
duced to the MGU by inserting terms for variables or by renaming variables
(cf. figure 1) 1 .

In this example, the terms x + 5 · 3 and 17 + 5 · z are unified. As x and
z are variables, we can use substitutions to replace x by 17 and z by 3, in
both cases the result is 17 + 5 · 3. Thus, 17 + 5 · 3 is called a unification of
x + 5 · 3 and 17 + 5 · z.

x + 5 · 3 17 + 5 · z
(x← 17)↘ ↙ (z ← 3)

17 + 5 · 3

Fig. 1: Example for Unification

Speaking formally, we define a substitution Θ = {v1 ← t1, . . . , vn ←
tn} as a unifier of expressions E1, . . . , En, if it holds that applying this
substitution always yields the same result, i.e. E1Θ = · · · = EnΘ. The
MGU is then defined as a unifier Θ, such that for all other unifiers σ of
E1, . . . , En there exists a substitution γ, such that σ = Θ ◦ γ. It should be
noted that an MGU is defined uniquely except for variable renaming and
that an MGU does not necessarily exist.

Unification has many applications, the probably most important being
inference algorithms for first-order predicate logic (FOL). In this field, unifi-
cation can be used to determine the correct substitution when dealing with
quantified variables. Most logical programming languages like Prolog use
proofs by resolution, which is based on unification.

Detailed introductions to Unification can be found in most textbooks
about theoretical computer science, confer for example Schöning [1989].

3.2 Universal Unification

The short introduction to unification was mainly given to facilitate the un-
derstanding of Anti-Unification in the following sections. As we will see,
syntactic Anti-Unification, which is the dual concept to unification, will not
suffice for our purposes, and it will be necessary to incorporate knowledge
from equational theories in the process. Something similar can also be done
to unification. It is indeed possible to use an equational theory, such that

1 The operators + and · are used in the usual sense, that is, a + b · c is to be read as
+(a, ·(b, c)).

3 Introduction to Anti-Unification 9

unifying two terms a and b is possible although their structure bears no re-
semblance, if a =E a′ and b =E b′2in the theory and b and b′ can be unified
in the normal way. Of course, this requires new algorithms.

As Unification is extensively used in many knowledge based systems in
Artificial Intelligence, there are many applications of such “General Unifi-
cation”. An extensive summary of classical approaches in this field can be
found in Siekmann [1984].

3.3 Syntactic Anti-Unification

Anti-unification is the dual concept to unification. Where unification looks
for the most general unifier, Anti-Unification computes the most specific
generalization of two (or more) terms. Anti-unification basically tries to
extract the common structure between terms. The aim is to construct a new
term which incorporates all common information from the anti-unified terms
and marks all differences by variables. The result of the Anti-Unification of
expressions E1, . . . , En is therefore an expression E, such that substitutions
σ1, . . . , σn exist for which it holds that Eσi = Ei for all i ∈ {1, . . . , n}.

In contrast to unification, Anti-Unification is always possible, at least
the trivial Anti-Unification x, where σi = {x ← Ei} for all i ∈ {1, . . . , n}
does always exist and one can also always find one most specific one (except
for variable renaming).

Consider the example given in figure 2, where the Anti-Unification of
the two terms 13 + 5 · 7 and 17 + 5 · 9 is depicted. Anti-Unification replaces
the numbers different on both side by variables x and y. The Substitution
σ = {x ← 13, y ← 7} would transform the result to the first term and
another substitution σ′ = {x← 17, y ← 9} would yield the second one.

13 + 5 · 7 17 + 5 · 9
↘ ↙

x + 5 · y

Fig. 2: Example for syntactic Anti-Unification

At this point, it is important, to note one thing: The Anti-Unification
of the two terms is merely a syntactic process. I used an example from
the domain of mathematics, however, the symbols + and · do not “mean”
anything in this context. You could use arbitrary operators instead. Nothing
about these operators needs to be known to use Anti-Unification, however on
the other hand no knowledge about the operators can be used in syntactic
Anti-Unification. Consider for example replacing the second term by 5·9+17.

2 Here =E denotes equality in an equational theory, in contrast to syntactic identity

3 Introduction to Anti-Unification 10

Assuming usual laws of commutativity, this term would not at all differ
from the one used before in a mathematical sense. However, the Anti-
Unification would in this case yield only the solution x+y, where σ = {x←
13, y ← 5 · 7}, σ′ = {x ← 5 · 9, y ← 17}. To put it in other words: The
use of background knowledge of any kind is impossible in classical Anti-
Unification. Of course one could consider to change the algorithm used for
Anti-Unification and to give it the ability to obey laws of commutativity
and associativity. This has indeed been done, cf. for example Pottier [1989].
However, approaches like this can only account for very special background
knowledge. To solve other problems, namely that of solving proportional
analogies by Anti-Unification, far more general background knowledge needs
to be integrated. To tackle this problem, E-Generalization can be used.

Algorithms for computing the Anti-Unification for n terms effectively
were written by Plotkin [1970] and Reynolds [1970] independently. Confer
figure 3 for a simplified version of the algorithm for two terms, quoted freely
from Reynolds [1970].

function au(x,y)
if x = y

x
else if x = f(x1, . . . , xn)
and y = f(y1, . . . , yn)
f(au(x1, y1), . . . , au(xn, yn))

else
ϕ

where ϕ is a newly introduced variable which maps
to x under σ and to y under σ′

Fig. 3: Algorithm for syntactic Anti-Unification of two terms

3.4 E-Generalization

As we have seen in the last chapter, to use Anti-Unification for the pur-
pose of computing proportional analogies, we need to integrate background
knowledge into the Anti-Unification process. Heinz [1996] developed a way
to use background knowledge in the form of canonical equational theories,
i.e. theories that use a term rewrite system which is ground-confluent and
noetherian (well-founded). In those theories, terms can be put to a unique
normal form.

Heinz [1996] first develops a method for enumerating all generalizations
to a given pair of terms. However, depending on the background theory,
usually the resulting set will be infinite. Given that the theory allows for

3 Introduction to Anti-Unification 11

a normal form, all rules from the background theories have to be read in
only one direction, however, this still allows for infinitely many (countable)
terms as a result. This method from Heinz is therefore not of interest for a
practical application.

What is of more interest to us, is the question when terms and their gen-
eralization with respect to a canonical equational theory can be represented
in a closed form.

The idea proposed by Heinz [1996] is to represent every term as a regular
tree grammar which are defined by figure 4. The idea is then to anti-unify
not terms, but complete regular tree grammars. The resulting grammar
should then be the equivalence class of all terms that can be achieved anti-
unifying every pair of input terms. This technique of anti-unifying complete
grammars and not only terms is then referred to as E-Generalization.

I will not use the original algorithm from Heinz [1996] but rather an
improved form from Burghardt [2005], which fulfills the same task in a far
more elegant and less task-specific way.

Definition of regular tree grammars:
A regular tree grammar is a quadruple G =
(Σ,N , S,R). Σ is a signature, i.e. a set of func-
tion symbols f , where each f has a fixed arity, if the
arity is 0, f is called a constant. N is a finite set of
Nonterminals. S ∈ N is a starting symbol. R is a
finite set of rules of the following form:

N :: = f1(N11, . . . , N1n1)| . . . |fm(Nm1, . . . , Nmnm)

Fig. 4: Definition of regular tree grammars as used by
Burghardt [2005], freely adopted

The class of regular grammars was developed in 1968 (Brainerd [1968]
and Thatcher and Wright [1968]). It is located in the Chomsky-Hierarchy (cf.
Hopcroft and Ullman [1979]) between regular and context-free languages.
It is more general than regular languages, however it is closed against in-
tersection, complement and union, like regular languages. Algorithms for
determining intersection, complement and union, as well as a very deep
and comprehensive introduction to regular tree grammars can be found in
Comon et al. [1997].

3.5 An Example

For the sake of brevity, let us consider the very simple equational theory
given in figure 5. It contains just rules for the commutativity of addition

3 Introduction to Anti-Unification 12

and multiplication.

E1 : x + y = y + x

x · y = y · x

Fig. 5: Equational theory for Example 7

If we now consider the example given before, namely the two terms
5 · 9+17 and 13+5 · 7, we have to find regular tree grammars G1 and G2 for
those terms with respect to the given theory. Such tree grammars are given
in figure 63.

Σ = {+/2, ·/2, 5/0, 7/0, 13/0, 17/0}
N = {t, t5·9, t′, t5·9}
R = {
t :: = +(t5·9, 17)|+ (17, t5·9)

t5·9 :: = ·(5, 9)| · (9, 5)
t′ :: = +(13, t5·7)|+ (t5·7, 13)

t5·7 :: = ·(5, 7)| · (7, 5)
}
S = t for the term 5 · 9 + 17(G1)
S = t′ for the term 13 + 5 · 7(G2)

Fig. 6: Regular tree grammars for Example 7 wrt. to the theory 5

Our aim is now to compute the Anti-Unification of the two given terms
modulo our theory. Burghardt [2005] states a suitable algorithm for doing
so. I will describe it in section 4.1 in detail. We can thereby compute a
regular tree grammar describing exactly the Anti-Unification of our given
terms. Following our example, the Anti-Unification of our two terms now
delivers a grammar containing among others the term x + 5 · y (cf. figure
7). We have therefore achieved our goal and are able to account for our
background knowledge and, what is important, did not incorporate it in our
algorithm.

3 Here ϕ/n denotes a function symbol with name ϕ and arity n

3 Introduction to Anti-Unification 13

5 · 9 + 17 ∈ G1 G2 3 13 + 5 · 7
↘ ↙
G = au(G1,G2)

∈

x + 5 · y

Fig. 7: Example for E-Generalization

3.6 Drawbacks

In the description of the procedure given before, two steps are problematic.
The first problem occurs when the regular grammars need to be generated
from the background theory. For some special cases, algorithms are known,
however, a generic method is not yet available.

Emmelmann [1991] gives criteria for a certain class of canonical equa-
tional theories which can be used to generate regular tree grammars. The
same work also states an algorithm for the generation of those grammars,
however, an application of those grammars cannot be done easily and does
also not solve the problem for all canonical equational theories. About the
problem of grammar generation, confer also my comments in v. Thaden and
Weller [2003].

Currently, for some cases automatic or at least semi-automatic methods
for generating tree grammars can be given, for example for some part of
arithmetics (see v. Thaden and Weller [2003]). For all other cases, unfortu-
nately the grammars have to be generated by hand.

The second problem occurring in our procedure, is the enumeration of
our resulting grammar. Regular grammars do usually describe an infinite
set of terms. If a result giving a concrete term is desired, it is not a priori
clear, which term has to be selected from the regular grammar. This ques-
tion becomes extremely important when applying E-Generalization to solve
analogies. In section 4.4 we will see that in this case this is exactly the point
where human cognition is concerned most. As long as no deep understand-
ing of human representation of analogies is available, we can then answer
this question only empirically.

3.7 Other applications of E-Generalization

In this work it is intended to use E-Generalization to compute a solution of
proportional analogies. However, there are plenty other applications possi-
ble.

4 Applying E-Generalization to solve proportional analogies 14

Heinz [1996] mentions especially the application in lemma generation. In
automatically generated proofs often situations occur, where lemmata are
needed to complete a proof. In such situations a proof can only be completed
when a given problem is generalized and then solved. E-Generalization can
be used in this case to generate lemma candidates.

Another possible application, which is closer to the solution of propor-
tional analogies, is the completion of number series. This approach, as
undertaken first by Hofstadter and the Fluid Analogies Research Group
[1995] (cf. chapter 2.2), also makes use of analogies. The application of
E-Generalization to this problem has been done in v. Thaden and Weller
[2003].

4 Applying E-Generalization to solve proportional analogies

In this section I will describe how we can use E-generalization to solve pro-
portional analogies. This will be done in several steps. I will first describe
how to incorporate knowledge about a substitution into a grammar, also
called “lifting”. I will then show how we can use this method to obtain
an Anti-Unification of two grammars in the case that the substitutions are
already known. If suitable substitutions are not known beforehand, I will
describe how to obtain universal substitutions that can take their place, such
that an algorithm for anti-unifying grammars also without prior knowledge
is derived.

In section 4.2 I will then describe how to apply all those steps to solve a
proportional string analogy.

4.1 Algorithms for E-Generalization

4.1.1 Constrained E-Generalization

If we allow grammars to contain also variables, which are treated like con-
stants (i.e. nullary functions), we can apply substitutions to grammars. I
will use the notation Gσ to describe the result of applying the substitution
σ to the regular tree grammar G.

To anti-unify two grammars G and H, our goal is to find two substi-
tutions σ1 and σ2 and a grammar Q, such that Qσ1 = G and Qσ2 = H.
Constrained E-Generalization is constrained in the sense that the substitu-
tions σ1 and σ2 have to be known beforehand. In some applications this is
the case, cf. Burghardt [2005] or Heinz [1996] for examples. One example of
such an application would be “number series guessing”, see v. Thaden and
Weller [2003] for details.

The idea of constrained E-Generalization is now to apply the substitu-
tions “inversely” and intersect the resulting grammars.

4 Applying E-Generalization to solve proportional analogies 15

Now suppose, two substitutions σ1 and σ2 and a variable set V with
dom σ1

4 = dom σ2 = V is given. In the first step we therefore compute
two grammars Gσ1 and Hσ2 , such that Gσ1σ1 = G, Hσ2σ2 = H and every
“suitable” variable is introduced into the grammar. The algorithm is given
in figure 8.

The second step is to intersect the two new grammars. This is done in
a straightforward way, the algorithm is shown in figure 9. A more general
version of this algorithm can be found in Comon et al. [1997].

For a regular tree grammar G = (Σ,N , S,R) and a substitu-
tion σ we define a new grammar Gσ = (Σ ∪ dom σ, {Nσ|N ∈
N}, Sσ,Rσ), where Nσ is a new nonterminal, one distinct non-
terminal is introduced for each old nonterminal. The same is
done to S, and the rules Rσ are derived from R as follows:
For every rule

N :: =
˛̨̨m

i=1
fi(Ni1, . . . , Nini)

from R we introduce a new rule

Nσ :: =
˛̨̨m

i=1
fi(Ni1, . . . , Nini)|

˛̨̨
x∈ dom σ,xσ∈LG(N)

x

Where LG(N) describes all terms in the grammar G, that can
be reached when using N as a starting symbol.

Fig. 8: Lifting algorithm, from Burghardt [2005]

With those steps, we can now anti-unify two grammars, provided that
we already have the substitutions σ1 and σ2.

4.1.2 Unconstrained E-Generalization

We now consider a situation where nothing is known about substitutions,
only two grammars G1 and G2 are given. In Heinz [1996], a new, monolithic
algorithm for this situation was used for this purpose, however Burghardt
[2005] proposes another, more slim alternative. His idea is to compute two
universal substitutions τ1 and τ2 and then apply the algorithm for con-
strained E-Generalization, using those substitutions. Figure 11 shows how
to compute those substitutions.

Burghardt [2005] proves the existence of universal substitutions, where
“universal” is defined as follows: For any two substitutions σ1 and σ2 we
can find a substitution σ, such that it holds that for all terms both from
the domain of σ1 and the domain of σ2 and for all nonterminals from the

4 dom σ denotes the domain of σ, i.e. the set of all terms occurring on the left-hand
side of a substitution

4 Applying E-Generalization to solve proportional analogies 16

Let two grammars G1 = (Σ1,N1, S1,R1) and G2 =
(Σ2,N2, S2,R2) be given. We presuppose Σ1 = Σ2,N1 =
N2,R1 = R2. This can always be achieved by renaming and
then using the disjoint union of the parts of the grammar. We
now define a new grammar G := G1 ∩ G2 := (Σ1,N , S,R). N
is a set of new nonterminals and R a new set of rules, that are
defined as follows:
We run the following algorithm intersect on the nonterminals
and rules, starting with S1 and S2 as arguments and S as the
first newly introduced nonterminal.5

Let s, s′ be nonterminals and θ a newly introduced nonterminal.
Rules are added by the following algorithm intersect. To
compute intersect, the following steps are applied:

1. If intersect(s, s′) has been called before, no new rule
needs to be added.

2. If R1 contains a rule s :: = s1| . . . |sn,

add the rule

θ :: = intersect(s1, s
′)| . . . |intersect(sn, s′)

to R
3. If R1 contains a rule s′ :: = s′1| . . . |s′n,

add the rule

θ :: = intersect(s, s′1)| . . . |intersect(s, s′n)

to R
4. If R1 contains rules s :: = ϕ(s1, . . . , sn) and s′ :: =

ϕ(s′1, . . . , s
′
n),

add the rule

θ :: = ϕ(intersect(s1, s
′
1), . . . , intersect(sn, s′n))

to R
5. Else θ is ⊥, eliminate θ from all rules and for every rule

that is now empty, remove its head.

Fig. 9: Algorithm for grammar intersection

grammar we have tσi ∈ L(N)⇒ tστi ∈ L(N) for i = 1, 2.
We therefore have a sound method to compute the Anti-Unification of

two grammars.
It is important to note one thing at this point. The “lifting”-algorithm

and the grammar intersection are relatively efficient. The lifting-step can be
done in time O(ns), where n is the number of occurring nonterminals and s

5 Note, that to use such rules we have to widen the definition from Fig. 4 to allow for
nonterminals on the right-hand-side of the rules. This comes closer to the “old” definition
in Heinz [1996]. This algorithm for intersecting was chosen for the sake of simplicity in
the implementation. An alternative to this procedure is the use of the product automaton
construction, found in Comon et al. [1997].
We also have to presuppose that the grammar is in a kind of normal form, such that the
right hand side of all rules either consists only of nonterminals or of one function. This
can be done by renaming easily, the algorithm can be found in Heinz [1996].

4 Applying E-Generalization to solve proportional analogies 17

Let N be the set of all nonterminals.

1. Set N = ∅ and Nmax = ∅.
2. For each Nonterminal n ∈ N , compute (

T
x∈N

L(x))∩L(n)

and if the result is not empty, add n to N .

3. Add N to Nmax, remove all elements in N from N , and
if N 6= ∅, set N = ∅ and continue with step 2.

Fig. 10: Algorithmic computation of Nmax

Define Nmax as in figure 10.
For a nonterminal N , define t(N) as an arbitrary term from
L(N).
For each pair (N1, N2) ∈ Nmax ×Nmax do:
Introduce a new variable v(N1, N2). Define τi = {v(N1, N2)←
t(Ni)} for i = 1, 2.

Fig. 11: Computation of Universal Substitutions, from Burghardt [2005]

is the total number of function symbols in the substitution. The grammar
intersection is possible in time O(n1n2), where ni are the numbers of nonter-
minals in both grammars respectively (cf. Comon et al. [1997] for details).
However, the computation of the universal substitutions is very inefficient.
As it requires the use of every subset of Nmax, its computation time depends
exponentially on the size of Nmax. Burghardt [2005] gives an upper bound
in the case that the grammar is deterministic. His upper time bound is
a polynomial of n0 + 1-th degree, where n0 is the number of nonterminals
representing one congruence class in the grammar. Burghardt states that in
most applications n0 does not exceed 1 and the E-Generalization can then
be done in O(n2). However, for the general case, no such upper time bound
can be given.

Thus, whenever it is possible to avoid the computation of universal sub-
stitution, this should be done. This is of course only possible if the ap-
plication allows for some a priori knowledge about the substitution and,
unfortunately, that is not always the case.

4.2 Solving proportional analogies

I will now describe how exactly to apply E-Generalization to solve propor-
tional analogies. I will assume in this section, that the analogy to solve is of
the form A : B :: C : D, i.e. A is to B, as C to D, where A,B, C are given
and D is to be computed.

Figure 12 shows the basic steps of the procedure. First the algorithm
from section 4.1.2 is used to compute the common grammar GAC of A and
C and, more important, the substitutions τ1 and τ2. Now, we compute a

4 Applying E-Generalization to solve proportional analogies 18

grammar Q, such that Qτ1 = B, i.e. we apply the inverse of τ1, we will call
this σ−1

1 . This is done by the “lifting”-algorithm described in section 4.1.1.
The substitution τ2 is then applied to Q and yields a grammar describing
possible candidates for D. The question of how to extract terms from this
grammar will be discussed in section 4.4.

A : B :: C : D

[A]E [C]E

[A]τ1E [C]τ2E[A]τ1E ∩ [C]τ2E

GAC :=

[B]E

[B]τ1E
=: Q

[D]E

τ1 τ2

τ−1
1 τ−1

2

τ−1
1

τ2

Fig. 12: Solving a proportional string analogy

I will now explain why this approach will yield a reasonable result.
In the first step, we anti-unify grammars describing the terms A and

C. As a result, we get a grammar GAC describing the “common structure”
of A and C. We also get substitutions τ1, τ2, such that GACτ1 = A and
GACτ2 = C. Consider for example a variable (which would actually be
contained in GAC when using the example grammar from the Appendix)
vag with vagτ1 = a and vagτ2 = g. In some way this variable describes
the role that a plays in abc and g play in ghi. We now want to find the
“corresponding” variable in the grammar B describing abd. We do this by
“lifting” the grammar B, such that it also contains for example a variable
va∗ with va∗τ1 = a. We now compare the variables in GAC and those in
Q. For every two variables x, y occuring in GAC and Q respectively, with
xτ1 = yτ1, we can apply τ2 to y and will in thereby “do the same thing” to
y that we did to x, i.e. we transform B in the same way we transformed A
to get C – which is exactly what proportional analogies are supposed to do.

4 Applying E-Generalization to solve proportional analogies 19

4.3 Serial solving of similar analogies

Within our approach, so far, it is important to notice, that the first step,
namely to compute the universal substitutions of A and C, is a computa-
tionally very expensive one. However, it is also important to notice, that
this step does not depend on B. Thus, to solve for example some tasks like
abc : abd :: ghi :?, abc : bcd :: ghi :?, and abc : cba :: ghi :?, the substitutions
have to be computed only once. The main reason for this is, that by anti-
unifying A and C, we compute the common structure of both. This step of
abstraction needs to be done only once. Actually, abstraction occurs in our
method as a byproduct, which distinguishes our approach from most other
approaches.

4.4 Enumerating regular tree grammars

We are now able to solve proportional analogies like A : B :: C : D in a
sense that we can get a grammar describing all possibilities for D. However,
to compare our results to human problem solving, it is desirable to get just
a few terms as a result.

Most humans would be able to give several different solutions, when
asked to solve a proportional string analogy, and it would also be possible
to compare the answers from several humans. Consider for example the
analogy abc : abd :: ghi :?. The most common answer would probably be
ghj, which can be explained by the fact that in abc c is the successor of b and
in abd d is the successor of the successor of b, so we replace the successor of
h in ghi by the successor of the successor of it, j. However, there are more
possibilities, for example ghd (by the rule: replace the last letter by d), or
even abd (by the very straightforward rule: replace anything by abd). Other
analogies are even more ambiguous.

It is not completely clear, why humans prefer certain kinds of rules to oth-
ers. The explanations for the selection of a certain possibility might include
attributes like “simplicity” or “elegance”. Clearly, some kind of heuristics is
used to select a term from several possibilities.

The grammar computed in my approach should contain every solution
of the analogy that can be grasped by the – relatively powerful – terms of E-
generalization. Of course some rules will be never captured by this approach,
because they depend on personal experience or the like (“My grandmother
told me always to answer abc in analogy tasks...”), however, every solution
that can be grasped in algebraic terms, can be captured.

So the only thing missing for a model of human problem solving, is a
selection function for our resulting grammar. As our grammar has a tree
structure, we can traverse it with any standard algorithm. The most sensible
approach seems to be to use an algorithm like best first search and put the
knowledge about humans in the weight of the tree edges.

4 Applying E-Generalization to solve proportional analogies 20

The most simple approach would be to assign a constant weight of 1,
which would yield a breadth-first search and therefore select terms first that
have the simplest algebraic description.

Weights might also be determined heuristically by running a series of
experiments and probably yield a result closer to human problem solving
than mere depth of a solution as a criterion.

However, even very good adjusted weights will have one problem: The
information about which part of the substitutions τ1 and τ2 was used to
yield the resulting term is not used here. In the next part I will suggest
another variation of the algorithm that may incorporate such knowledge and
is therefore better suited to model human solving of proportional analogies.

4.5 Extended result selection

The point where human cognition is concerned most, is clearly the selection
of a term from the resulting tree grammar. To improve this method, several
possibilities can be considered.

The simplest extension of the algorithm could be a kind of serialization.
One might notice, that the algorithm for grammar intersection (Fig. 9)
contains qualitatively different steps. Steps 2 and 3 traverse alternatives in
rules, whereas step 4 descends into a term. Steps 1 and 5 do not change our
“position” in the tree. Thus, starting at the root of each tree grammar, as
long as step 4 is not applied, every symbol that occurs as an argument of the
algorithm, is still a complete description of our term. The overall algorithm
could therefore be varied in the following way:

1. Do the grammar lifting as described before

2. Apply the intersect algorithm as long as this is possible without
using step 4. Store all occurring nonterminal pairs (si, s

′
i) from the

grammars G1×G2 (i.e. whenever intersect(si, s
′
i) is called, remember

this pair).

3. Use an heuristics to select the best symbol pair.

4. Use the selected pair instead of the start symbols of the grammars and
proceed with the algorithm as before

This approach allows for an extended version of the selection of the
terms. We can not only account for the structure of the term in our re-
sulting grammar, but we can also use criteria derived from the nonterminal
pair (si, s

′
i) used to compute this solution. Using the symbols si and s′i as

starting symbols, and using Σ,N , and R from the original grammars, we
can interpret them as descriptions of our terms A and C respectively. And,
as rule 4 was not used in the intersect-algorithm, our new grammar still

5 Implementation 21

describe the complete terms A and C, although some alternatives are now
ruled out.

However, a nonterminal si will contain only part of the information that
was originally contained in G1. Some alternatives to describe the structure of
A (or C respectively) will not be contained in the new grammar. And exactly
this information can be used to select a term in the resulting grammar.

We are now able to use criteria that were formerly inaccessible. On the
one hand, criteria similar to those described in section 4.4 can be used in
this case as well. It might also be possible, to use a heuristics that prefers
“high level” functions to simpler ones, for example our Iter function to the
concatenation function ·. But what is far more important, we gain the
possibility to base a heuristics on the number of variables used to compute a
result term. This gives us the possibility to choose a result term, such that its
computation uses only a minimal subset of the substitutions. For example,
a rule mapping a description of abc like Iter(a, succ, 3) to one of ghi like
Iter(g, succ, 3), using only one variable term, can be given precedence over
a mapping of a · b · c to g ·h · i (i.e. the concatenation of the three constants),
which would need three variables with the corresponding substitutions.

It is probably a little far-fetched to describe such solutions as more “ele-
gant”, however it gives us a possibility to prefer solutions using more abstract
descriptions to those using only basic replacement of constants.

In some sense, this enforces a more abstract level of reasoning, and it
may even be one kind of criteria employed by humans. Using the terminol-
ogy of Leeuwenberg [1971], the information load might be lower using this
approach.

One completely different approach to support the result selection might
be to incorporate knowledge about B in the selection process. The rela-
tionship of A to B is only indirectly used in the algorithm, and may be
necessary to make the selection step more adequate. However, such steps
would require a quite fundamental re-design of the algorithm, and it is also
not clear, whether the feature of obtaining the abstraction as a by-product
of the process could be kept up in such a re-designed algorithm.

5 Implementation

Together with this thesis, a proof-of-concept implementation in Moscow-
ML was done. Moscow-ML is an implementation of Standard ML, which
is a strictly functional language. Because ML contains pattern-matching
algorithms, it can be used to interact with objects like trees and terms very
easily. The majority of the implementation is therefore very straightforward.

The implementation delivered with this thesis consists of seven different
files:

6 Conclusion and further work 22

conventions.ml contains conventions about terms etc. It defines a term, that
can be used in regular tree grammars, as Bottom, a Nonterminal, a
Variable (to be used in a substitution) or a Function, consisting of
a name and a list of arguments. All definitions are generic in the
sense, that they use the basic type symbol, which for this application
is defined as string, but can be changed easily to whatever type an
application might require (as long as it allows for an equality check).

A regular tree grammar is then defined as a start symbol and a list
of rules, the signature and the set of nonterminals are not represented
explicitly.

convenience.ml contains all convenience functions that are not part of any of
the algorithms. Those are functions like parsing terms from text files,
printing terms in a sensible way, and others.

synt au.ml contains a sample implementation of syntactic Anti-Unification.
This file is not needed for the E-Generalization-programs to work, it is
contained only to give a possibility to compare E-Generalization with
syntactic Anti-Unification.

normalize.ml features an algorithm to convert regular tree grammars into
half-normalized form, i.e. to a form where at the right-hand-side of
all rules either only nonterminals appear or only one function. Half-
normalized form of grammars is needed to facilitate the grammar-
intersection process (note that the grammar-lifting algorithm does not
disturb the normal form).

cegen.ml is the implementation of constrained E-Generalization. It contains
therefore the grammar-lifting algorithm as well as a function to inter-
sect two regular-tree grammars.

uegen.ml contains everything needed to allow for unconstrained E-Generalization,
namely, a function that computes two universal substitutions given two
regular tree grammars. It then just calls the function from cegen.ml
with those substitutions.

prop analogy.ml uses the programs from the other files to give the possibility
to compute the D of the proportional string analogy A : B :: C : D,
where A,B, and C are given as regular tree grammars.

Besides those files, some sample grammar files (*.gram) are given to
facilitate the testing of the programs.

6 Conclusion and further work

As we have seen, we have found an approach to solving proportional analo-
gies, that differs from most other approaches in some aspects.

6 Conclusion and further work 23

On the one hand, we aim not only at computing one or several terms
serving as propositions for solutions. We want to describe all possible so-
lutions in a closed form. We have seen, that this goal can be achieved by
using regular tree grammars. This gives us a possibility to describe the
(potentially infinitely many) possible solutions of an analogy.

On the other hand, we do not wish to use a direct mapping (which would
also not compute all solutions), but an indirect one via abstraction. The
common structure of our terms is extracted as a byproduct of the process
of solving the analogy.

As the algorithms are all proven to be correct (most of them in Burghardt
[2005]), as long as our background knowledge correctly describes the domain,
the result will also be correct in the sense, that an analogy between A : B
and C : D does really exist in an algebraic sense.

An equational theory for strings can be worked out relatively easy. Fol-
lowing Leeuwenberg [1971], this holds also for other domains, e.g. geometri-
cal figures, which can be represented as strings, and the equations equations
can be given accordingly.

The problem is, that what is missing is an automated way to generate
the regular tree grammars needed for our algorithm from the equational
theory describing the background knowledge. Some ideas about such an al-
gorithm can be found in Emmelmann [1991] and Burghardt [2005], however,
a concrete description of an algorithm and an implementation of this is yet
to be done.

Another piece of further work to be done is the serialization step de-
scribed in chapter 4.5. The implementation of this step should be a rather
straightforward step, but nevertheless it might give a lot more possibilities
concerning the heuristics for result selection.

These heuristics are the final piece of further research that is necessary. I
proposed only very basic heuristics, that seem to be reasonable to me, how-
ever, to come closer to human problem solving, empirical investigations are
needed. Statistics about the proposed solutions from human subjects needs
to be done, and a mapping of those results to positions in the corresponding
regular tree grammar might then lead to the development of a heuristics
that resembles human cognition closer.

6 Bibliography 24

Bibliography

W.S. Brainerd. The minimalization of tree automata. Information and Control, 13:484–
491, 1968.

Jochen Burghardt. E-generalization using grammars. Artificial Intelligence Journal, 165
(1):1–35, 2005.

Jochen Burghardt and Birgit Heinz. Implementing Anti-Unification Modulo Equational
Theory. Technical report, GMD - Forschungszentrum Informationstechnick GmbH,
1996.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. Tree automata techniques and applications. Available on: http://www.grappa.

univ-lille3.fr/tata, 1997. release October, 1rst 2002.

Mehdi Dastani, Bipin Indurkhya, and Remko Scha. An Algebraic Approach to Modeling
Analogical Projection in Pattern Perception. In Proceedings of Mind II, 1997.

Jim Davies and Ashok K. Goel. Visual analogy in problem solving. In IJCAI, pages
377–384, 2001. URL citeseer.ist.psu.edu/davies01visual.html.

H. Emmelmann. Code Selection by Regularly Controlled Term Rewriting. In Proc. of Int.
Workshop on Code Generation, 1991.

Thomas G. Evans. A Program for the Solution of a Class of Gemetric-Analogy Intelligence-
Test Questions. In Marvin Minsky, editor, Semantic Information Processing, chapter 5,
pages 271–353. MIT Press, 1968.

Dedre Gentner. Structure-mapping: A theoretical framework for analogy. Cognitive Sci-
ence, 7(2):155–170, April–June 1983.

E. Bruce Goldstein. Sensation and Perception. Wadsworth Publishing Co., Belmont,
California, 1980.

Helmar Gust, Kai-Uwe Kühnberger, and Ute Schmid. Ontological aspects of computing
analogies. In ICCM 2004, Procedings of the International Conference on Cognitive
Modelling, 2004.

Birgit Heinz. Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lem-
magenerierung. Technical report, GMD - Forschungszentrum Informationstechnick
GmbH, 1996.

Douglas Hofstadter and the Fluid Analogies Research Group. Fluid Concepts and Creative
Analogies. BasicBooks, 1995.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

E. Leeuwenberg. A perceptual coding language for visual and auditory patterns. American
Journal of Psychology, 84:307–349, 1971.

S. O’Hara. A model of the redescription process in the context of geometric proportional
analogy problems. In Int. Workshop on Analogical and Inductive Inference (AII ’92),
volume 642, pages 268–293. Springer, 1992.

G.D. Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5,
pages 153–163. Edinburgh University Press, 1970.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
citeseer.ist.psu.edu/davies01visual.html

6 Bibliography 25

L. Pottier. Generalisation De Termes En Theorie Equationnelle. Technical Report 1056,
INRIA, 1989.

J. Reynolds. Transformational Systems and the Algebraic Structure of Atomic Formulas.
In Machine Intelligence, volume 5. Edinburgh University Press, 1970.

Ute Schmid, Helmar Gust, Kai-Uwe Kühnberger, and Jochen Burghardt. An Algebraic
Framework for Solving Proportional and Predictive Analogies. In Franz Schmalhofer,
Richard Young, and Graham Katz, editors, Proceedings of the European Conference on
Cognitive Science, Osnabrück, 2004.

Uwe Schöning. Logik für Informatiker. Number 56 in Reihe Informatik. Wissenschaftsver-
lag, Mannheim, 1989.

Jörg H. Siekmann. Universal Unification. In Robert E. Shostak, editor, Proceedings of
the 7th International Conference on Automated Deduction (CADE-7), volume 170 of
Lecture Notes in Computer Science, pages 1–42. Springer, 1984.

J.W. Thatcher and J.B. Wright. Generalized finite automata theory with an application
to a decision problem of second–order logic. Mathematical Systems Theory, 2(1), 1968.

Michael v. Thaden and Stephan Weller. Lösen von Intelligenztestaufgaben mit E-
Generalisierung (Solving intelligence tasks by E-Generalization). In Tagungsband der
Informatiktage 2003, pages 84–87. Gesellschaft für Informatik e.V., 2003.

A Program installation and usage 26

Appendix

A Program installation and usage

A.1 Availability

The implementation used for this thesis can be downloaded at http://
www-lehre.inf.uos.de/~stweller/ba/.

A.2 ML requirements

The program was developed and tested using Moscow-ML (http://www.
dina.kvl.dk/~sestoft/mosml.html). However, every other implementa-
tion of Standard ML should also work.

A.3 Installation

The program ships as .ml-files containing the sourcecode. To get the system
running, the only thing necessary is to unpack all files to the same directory.

A.4 Usage

To compute the string analogy A : B :: C : D, the following steps are
necessary:

• Open an ml-session and read the file prop_analogy.ml by the com-
mand: use prop_analogy.ml.

• Build the grammars either interactively in an ml-session, or read them
from textfiles by the function readGrammar, given the filename as an
argument.

• Call the main function prop_analogy with the following arguments
(in order):

– The starting symbol of the grammar describing A

– The starting symbol of the grammar describing B

– The starting symbol of the grammar describing C

– The (common) rule list of the grammars. If your grammars do
not share the same rules, append the rules, as long as the names
are not conflicting, this will not cause any problems.

• You are returned the resulting grammar for D. It can be printed nicely
by the function printGram.

http://www-lehre.inf.uos.de/~stweller/ba/
http://www-lehre.inf.uos.de/~stweller/ba/
http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.dina.kvl.dk/~sestoft/mosml.html

B Example Grammar for abc : abd :: ghi :? 27

B Example Grammar for abc : abd :: ghi :?

Nabc :: = Na ·Nbc|Nab ·Nc|Iter(Na, Nsucc, N3)

Nab :: = Na ·Nb|Iter(Na, Nsucc, N2)

Nbc :: = Nb ·Nc|Iter(Nb, Nsucc, N2)

Nabd :: = Nab ·Nd|Na ·Nbd

Nbd :: = Nb ·Nd

Nghi :: = Ngh ·Ni|Ng ·Nhi|Iter(Ng, Nsucc, N2)

Ngh :: = Ng ·Nh|Iter(Ng, Ns, N2)

Nhi :: = Nh ·Ni|Iter(Nh, Ns, N2)

Na :: = a|Iter(Na, Nsucc, N1)|p(Nb)

Nb :: = b|Iter(Nb, Nsucc, N1)|s(Na)|p(Nc)

Nc :: = c|Iter(Nc, Nsucc, N1)|s(Nb)|p(Nd)

Nd :: = d|Iter(Nd, Nsucc, N1)|s(Nc)|p(Ne)

Ne :: = e|Iter(Ne, Nsucc, N1)|s(Nd)|p(Nf)

Nf :: = f |Iter(Nf , Nsucc, N1)|s(Ne)|p(Ng)

Ng :: = g|Iter(Ng, Nsucc, N1)|s(Nf)|p(Nh)

Nh :: = h|Iter(Nh, Nsucc, N1)|s(Ng)|p(Ni)

Ni :: = i|Iter(Ni, Nsucc, N1)|s(Nh)|p(Nj)

Nj :: = j|Iter(Nj , Nsucc, N1)|s(Ni)|p(Nk)

Nk :: = k|Iter(Nk, Nsucc, N1)|s(Nj)|p(Nl)

Nl :: = l|Iter(Nl, Nsucc, N1)|s(Nk)|p(Nm)

Nm :: = m|Iter(Nm, Nsucc, N1)|s(Nl)|p(Nn)

Nn :: = n|Iter(Nn, Nsucc, N1)|s(Nm)|p(No)

No :: = o|Iter(No, Nsucc, N1)|s(Nn)|p(Np)

Np :: = p|Iter(Np, Nsucc, N1)|s(No)|p(Nq)

Nq :: = q|Iter(Nq, Nsucc, N1)|s(Np)|p(Nr)

Nr :: = r|Iter(Nr, Nsucc, N1)|s(Nq)|p(Ns)

Ns :: = s|Iter(Ns, Nsucc, N1)|s(Nr)|p(Nt)

Nt :: = t|Iter(Nt, Nsucc, N1)|s(Ns)|p(Nu)

Nu :: = u|Iter(Nu, Nsucc, N1)|s(Nt)|p(Nv)

Nv :: = v|Iter(Nv, Nsucc, N1)|s(Nu)|p(Nw)

Nw :: = w|Iter(Nw, Nsucc, N1)|s(Nv)|p(Nx)

Nx :: = x|Iter(Nx, Nsucc, N1)|s(Nw)|p(Ny)

Ny :: = y|Iter(Ny, Nsucc, N1)|s(Nx)|p(Nz)

Nz :: = z|Iter(Nz, Nsucc, N1)|s(Ny)

Nsucc :: = succ

N1 :: = 1

N2 :: = 2

N3 :: = 3

	1 Introduction
	2 Analogical Reasoning - some classical approaches
	2.1 ANALOGY
	2.2 Copycat
	2.3 Structural Information Theory

	3 Introduction to Anti-Unification
	3.1 Unification
	3.2 Universal Unification
	3.3 Syntactic Anti-Unification
	3.4 E-Generalization
	3.5 An Example
	3.6 Drawbacks
	3.7 Other applications of E-Generalization

	4 Applying E-Generalization to solve proportional analogies
	4.1 Algorithms for E-Generalization
	4.1.1 Constrained E-Generalization
	4.1.2 Unconstrained E-Generalization

	4.2 Solving proportional analogies
	4.3 Serial solving of similar analogies
	4.4 Enumerating regular tree grammars
	4.5 Extended result selection

	5 Implementation
	6 Conclusion and further work
	Bibliography
	A Program installation and usage
	A.1 Availability
	A.2 ML requirements
	A.3 Installation
	A.4 Usage

	B Example Grammar for abc:abd::ghi:?

