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Abstract

This thesis presents an analysis of thes¥WAL MoNO-SLAM algorithm used to create sparse con-
sistent 3D maps in real-time from images perceived by a mdaodand-held camera developed by
Davison et al. [13,16,20]. To understand the workings of3AL MONO-SLAM, foundations concern-
ing camera models and lens distortion are presented armvidl by an excursion about visual features
and image procession techniques. The concept of the Exteddienan lter is introduced and it is
shown how an Extended Kalman lter can be used to obtain bd&b @ose estimation for the camera
and position estimates for feature points in a 3D coordifi@ee. An encoding for 3D point estima-
tions using inverse depth is presented, allowing for immtedieature initialization without any prior
knowledge about the depth of the feature point. It is shove tthis encoding performs well even for
features at great depth showing small or no parallax in eshto conventional XYZ encoding. To save
computational load a conversion mechanism from inverseéhdepcoding to common 3 dimensional
XYZ encoding for features showing high parallax is discdsg&n implementation using ENCV and
OPENGL is used to evaluate the discussed methods in a simulatigorovided sample image sequences
and with a real time camera.

Zusammenfassung

Die vorliegende Arbeit beschreibt die Funktionsweise desL MoONO-SLAM Algorithmus zur
Erstellung von dinn besetzten 3D Karten vorgestellt vorigse et al. [13, 16, 20]. Als Sensor zur
Kartenerstellung dient eine einfache handelsiiblichedAih die per Hand durch die Umgebung gefiihrt
wird. Um den MsuAL MoNO-SLAM Ansatz besser verstandlich zu machen werden als diagen
ein einfaches Kameramodell und seine Erweiterungen zuam#tng von Linsenfehlern vorgestellt und
durch ein Kapitel zur Erkennung von besonderen Bildmerkmaind verschiedenen Bildverarbeitung-
stechniken abgerundet. Das Konzept des Erweiterten Kalfilans wird vorgestellt und am Beispiel
von VISUAL MONO-SLAM praktisch erlautert. Dabei wird gezeigt, wie man Hitfe des Erweiterten
Kalman-Filters sowohl die 6D Pose der Kamera als auch die 8§}tiBnen beobachteter Merkmale
im 3 dimensionalen Raum schatzen kann. Eine zusatzlidmaRentationsmoglichkeit fur 3D Punkte,
bei der die inverse Tiefe mit ein ief3t, ermoglicht eine adige Initialisierung von 3D Merkmalen im
Erweiterten Kalman-Filter ohne zusatzliche Informaénriiber die raumliche Tiefe des Merkmals zu
haben. Es wird gezeigt, dass diese Reprasentation, irmGaigezur gewohnlichen XYZ Reprasentation
eines 3D Punktes, auch die korrekte Modellierung von Punigeol3er Entfernung mit wenig Parallaxe
ermoglicht. Um Rechenkapazitat zu sparen wird gezeigt,Merkmale mit gentigend kleiner Unsicher-
heit bezuglich ihrer Tiefe in eine gewdhnliche XYZ Reggétation umgewandelt werden konnen. Um
die vorgestellten Methoden zu bewerten werden einige Exgete in einer Simulationsumgebung, mit
festen Bild-Sequenzen und einer in Echtzeit mit einer regl@mera durchgefihrt.
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Chapter 1

Introduction

1.1 Robotic Mapping

Map creation remains a very active eld in the robotics andcAinmunity. Especially in the domain of
mobile roboticgeliable sensor information and its comparison with a giverael are crucial in order for
self-localization and meaningful navigation. To avoidited map creation by hand several approaches
for automatic map creation have emerged over the past wedinsthe so called SLAM-approach being
one of the most popular at the moment. A great overview owegraétechniques for map creation is
provided by Thrun in [46] and is recommended to familiarinesgelf with this topic.

SLAM is short for Simultaneous Localization And Mapping agtregates a number of approaches
of automated map generation without any additiopaseknowledge apart from sensor information.
That means that while the map is constructed the robot hasrteatly localize itself in the map it has
constructed so far in order to expand the map with new senfammation. The interplay between map
construction and localization is crucial in SLAM: If the llzation if faulty, new sensor information
added to the existing map will not be consistent, thus namising the environment. However if the
environment is not correctly modeled sensor informatiotngad by the robot will not correspond with
expected sensor measurements suggested by the map anchiizatmon will become erroneous.

The underlying methods (for example probabilistic metheglsnon-probabilistic methods) to solve
the SLAM problem differ, oftentimes depending on the typserisor information available and the time
constraints imposed by the application scenario (online generation vs. batch-processing). Along
with the methods and sensor information the resulting mapgiffer in their dimensionality (2D or
3D) and their representation of the environment (for exangalint clouds or occupancy grids). Since
SLAM approaches can be discerned by a large amount of dtgpit becomes hard to strictly cluster
existing approaches in a meaningful way. In the followingharsdescription of the state of the art in
SLAM will be given, distinguished rst by the type of sensanployed.

1.1.1 Range nder based approaches

For many applications laser range nders are the sensoraitehLaser range nders use laser light to
measure distances. Thus by rotating it with a known rotatioa xed position it becomes possible to
obtain 3D data points in a reference frame with the range rratéts origin. Dependent one the type
of laser range nder complete 3D rotation may be alreadythnjlthus onescanwill consist of a full
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3D point cloud around the range nder. Other sensor typesgbgain distance measurements aligned
on a plane with a certain opening angle (for example an ogeaigle of 180would return distance
measurements of points in a plane to the sides and the fraheafainge nder). Accuracy, frame rate
and the type of scan (full 3D point cloud or plane) are in closgelation with the money one is willing
to spend on the laser range nder. However it can generallgdid that laser range nders provide
far better accuracy and higher frame rates than other consansors measuring depth like sonar or
infra-red sensors. For 2 dimensional maps many succesgfubaches exist today, often employing
probabilistic methods like the Kalman lter and its derivats (for examples please refer to [46]). A
inherent disadvantage of Kalman lter based approachdsaisthey are monomodal, which means that
they can only model one hypothesis at a time. If the pose isna@monomodal system (i.e. if the error
between the estimation and the real state of the system domnarge) it is hardly ever recovered. To
address this problem techniques sustaining multiple Ingsats at a time were introduced. One example
for such atechnique is the particle Iter, where multiplegogheses and their probability are maintained.
If the probability of a single particle becomes to small ipisned and regularly new particles a spawned
to prevent the system to differ to much from one of the susthimypotheses. An example for a particle
Iter based SLAM approach can be found im&SLAM by Hahnel et al. [23]. Furthermore particle
Iters are often employed in Monte Carlo Localization, réging a map of the environment and tackling
only the localization aspect of the SLAM problem.

However the vast amount of data obtained in 3 dimensionaisscampers the performance of prob-
abilistic approaches so that for full 6D SLAM (3 coordinatinoting position and 3 angles denoting
orientation) non-probabilistic approaches like scanetmayg perform well as demonstrated in [35, 36].
Scan matching approaches usually try to fuse two partialgriapping 3D point clouds (scans) into a
larger consistent point cloud. As a rst guess for the rgkatranslation and orientation of the scans often-
times odometry information is used. This estimation is egrby minimizing the overall point-to-point
distances in both scans via ICP or other suitable algorithflgis 3D maps can be built incrementally
by fusing a new scan with the already existing combined pdud. If loops are detected the created
map can be made globally consistent through an adaptioredlgorithm of Lu an Milios to 6DoF (see
Borrmann et al. [5]) or by the recently published ELCH altfum of Sprickerhof [45].

1.1.2 Vision based approaches

Apart from range nders (including sonar, laser, infra-mtd time-of- ight cameras), cameras are also
used to construct 3 dimensional maps. Basically 2 diffegrds of cameras can be distinguished: Stereo
and mono cameras. Stereo cameras consist of at least twoasawlgich are arranged in a xed position
to each other and observe the scene.ti@ngulation (explained later in section 2.4) stereo cameras are
able to obtain 3D information from the 2 dimensional dataytherceive. Due to the nature of image
data and image processing it is not possible to generates diapth maps or 3D point clouds for fast
real-time applications. Therefore 3D maps with vision ldasensors are usually sparse and less suited
for scan mathing techniques. While the reduced amount ef idatuch sparse maps do not resemble a
complete 3 dimensional model of the environment, probstilimethods become applicable again for
6D pose estimation.

For example Se, Lowe and Little use in [40,41] a mobile robatfprm equipped with a trinocular
stereo head employing SIFT features (see subsection 3d.@3in 3D information from the robots
surroundings by epipolar geometry. A rst guess for the egtham of the robot is obtained by its
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1.1. ROBOTIC MAPPING 3

odometry and the stereo vision system is then used to impooygometry estimation and determine the
position of the visual landmarks. Compared to other reaktvisual SLAM approaches the obtained
maps are quite dense. To maintain a consistent map Se et@lKalsan lter techniques to track
landmarks and model their uncertainty even in dynamic enwirents. Davison and Kita [18] equiped
a robot with an active stereo head (featuring 4 degrees afiooal freedom) to sequentially create
sparse 3D maps on the y for navigational purposes of the toBme keypoint in their approach is the
matching of visual features by active vision, which meaias thatures promising the most informational
gain are preferably matched. Once such a feature is detedntire active head can be driven to is
predicted position to obtain measurements. Davion anddfidied an EKF based SLAM algorithm to
combine visual information with odometry and inclinometgormation to allow for stable localization
in undulating terrain. A similar system is used in [19] by B@n and Murray, where they conduct several
experiments concerning automatic map growing and prursngedl as comparisons of their estimations
with ground truth. However off the shelf stereo systemsipgids above the low-cost segment and
the calibration of self-made stereo cameras requires maehtuning and tends to be sensitive towards
shaking often found on moving mobile robots.

If the pose of a single camera is known at each time, movingglescamera may likewise acquire 3D
information from images. In case of cameras mounted on tapgalfot the current camera pose is usually
not known, but can only be estimated as a rough rst guess hgratensor information like odometry.
For cameras not mounted on a robot, but hand-held devicethatite even these crude information are
not available to estimate their poses. Naturally pose esiim is crucial for single camera approaches,
since all depth measurements are dependent in the esticatesta poses. Thus single camera SLAM
becomes even a bit harder than the SLAM problem with a ranggoseA correct localization and pose
estimation is not only necessary to built a consistent mapalso to obtain measurements in the rst
place. General insight in the domain of visual map generatiith a single camera, apart from speci c
approaches is provided by Lepetit and Fua in [28] where theggmt an overview of miscellaneous 3D
tracking techniques of rigid objects with single camerakhdugh 3D tracking has not exactly the same
objective as SLAM, both topics are closely related in theecasmonocular sensors and share a lot
methods.

Single camera techniques can be divided into two subcaesgorhe rst type of approaches use
a complete sequence of multiple images to nd suitable spoadences between each frame and uses
information of all images to estimate camera movement angd@ition of the identi ed features. These
algorithms are off-line in their nature and thus the empibiechniques do not have to ful Il real-time
constraints. After initial estimations of camera movemami 3D positions of single features, methods
to reduce the global error may be applied and nally densdtdemaps can be constructed for the given
scene. This approach is often calktducture from motiorin the literature and various solutions can be
found in the computer vision community. In [21] FitzgibbamdaZisserman use a multi-step approach to
recover geometric information from given video sequendes rst phase stable features are detected
over all input images. In a second step the features are ethtghd their 3D position is estimated.
Afterwards other steps using triangulation and plane dtare applied to nally generate a VRML
scene of the observed geometry. Sato et al. [39] estimated3igns of features through a multi-
baseline approache and fuse the resulting depth maps inah space model of the environment. A
few predi ned markers with known 3D positions are suf ciettt scale the positions of automatically
generated feature points in a consistent manner. Polletesis describe in [38] an approach to recover
3D information from uncalibrated video sequences. Thelt@sutextured 3D models are fused in an
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exemplary application with real video sequences to creamavirtually augmented scene.

Other approaches do not analyze a complete sequence ofdiiagancrementally incorporate in-
formation gathered from a single image in their estimatibefre considering the next image. While
such an approach inhibits an analysis and reduction of teatherror it potentially allows for online or
real-time map creation, since only the current image has frbcessed. Currently the method of choice
for pose estimation of the camera and estimation of featoséipns is the Extended Kalman Filter. One
of the forerunners in this domain is Andrew Davison who inaimbration with others publishes exten-
sively on this topic [11-13, 16, 17, 20, 33]. Usually suchrapghes need a certain number of features
with known positions in order to work and new features haveambserved over a certain period to
guess their depth before they can be added to the EKF. Red&milson, Civera et al. introduced an al-
ternative feature representation. By representing a 3Bt jpgia 6 dimensional vector employing inverse
depth, new features can be added without any prior knowladdecontribute to overall state estimation
even if they show little or no parallax.

The purpose of this thesis is to introduce the reader to thiglrapproach. Firstly the needed back-
ground knowledge concerning camera models and image miogewill be provided. Afterwards the
underlying mechanisms of thetSUAL MoNO-SLAM algorithm without prior knowledge as presented
by Civera, Davison and Montiel in [13] are discussed andyeseal in detail. The main focus is the com-
plete derivation of the EKF mathematics and their meaningisuAL MoONO-SLAM, with additional
information concerning an inverse depth representati®Doboints compared to the conventional XYZ
representation. The discussed methods are evaluated utated environment and with real image
sequences to provide the reader with information concgrifig quality of the VsuAL MONO-SLAM
approach.

1.2 Thesis Outline

Chapter 1. A short explanation of the SLAM problem along with diffetesolution approaches. Fur-
thermore an outline of the complete thesis.

Chapter 2: An introduction to the basic theoretical camera model camiynused in computer vision
and its extensions to better t real world cameras.

Chapter 3: A description of different image interest operators, umthg Harris Corners, SIFT and
SURF descriptors. This is followed by some general remasksisimage processing, the bene ts
of integral images and a mechanism to compare image patches.

Chapter 4: An in-depth analysis of the MuAL MONO-SLAM algorithm. This includes a brief intro-
duction of the Extended Kalman Filter and how this conceptstme used to correctly model the
speci ¢ demands of the MsuAL MoONO-SLAM application. Furthermore two alternative encod-
ing methods for a given 3D point and their adavantages ardidsitages are discussed.

Chapter 5: To evaluate the workings of UAL MONO-SLAM a simulation environment is presented
along with results obtained from the simulation. Pract®aluation for given image sequences
using Shi-Tomasi based features and SURF are comparedatjualy and presented alongside
real-time experimental results.

Chapter 6: This chapter concludes the thesis, presenting the ndingen topics for future work and
remarks.

AN ANALYSIS OF VISUAL MONO-SLAM



Chapter 2

Camera

As mentioned in the introduction in chapter 1 the only semsfmrmation in Mono-SLAM is gathered
from a standard low-cost USB digital camera. Low-cost devitypically use a CMOS sensor and do
not exceed an image resolution@®f0 480 pixels.

The following chapter will rst introduce an ideal basic cara model in section 2.1 and show how
this ideal model can be modi ed with a distortion model ($&ct2.2) to better t the imperfections found
in real camera lenses. How to estimate model parameterbdatistortion model will be discussed in
section 2.3. The remainder of this chapter will explain iotie® 2.4 how to estimate 3D positions from
the collected 2D data in subsequent camera images.

2.1 The Pinhole Camera Model

This section will rst introduce the basiginhole camera modéh subsection 2.1.1. Although the model
requires some assumptions lacking in real cameras it biva for a reasonable rstapproximation. Due
to its mathematical convenience and simplicity it is nowedaidely used in the domain of computer
vision and computer graphics. In subsection 2.1.2 someattas of the assumptions of the basic model
presented in 2.1.1 are introduced to better emulate piepddund in real cameras.

2.1.1 The basic model

The pinhole camera model consists of 2 dimensional plam@&lidg a 3 dimensional coordinate system.
The two dimensional plane is referred to as girehole planeand it features an in nitesimal hole (the
eponymouginholg. The pinhole corresponds to the origihof the 3 dimensional camera coordinate
system and is also known as thptical centerof the camera. The coordinate axes are referred to as
X Yc andZ., whereX ¢ points to the side of the camerg, points up and . is pointing in the viewing
direction of the camera. Thus the plane generated bgndY, corresponds with the pinhole plane. The
Zc-axis is often referred to as tloptical axisor principal axis Theimage plands parallel to the pinhole
plane and located at distantd > 0 from the originO along the negativ& .-axis. The intersection
of the image plane with the negatidg-axis is calledprincipal pointor image centeand denoted aR.
The 3 dimensional world in front of the pinhole camera (iredirection of the positive .-axis) will be
projected through the aperture on the image plane. Thendistaetween image plane and pinhole plane
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pinhole plane

\ Ve
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Figure 2.1: Pinhole camera model. The red lines indicates the displanefrom the optical centdd in X; Y,
andZ. direction forP;, while the blue lines show the displacement of the project) from the image center
R. The ray from poin®; through the optical centéd to its projectionQ; is shown in green. The focal length
de nes the distance between the pinhole plane and the image p

is thefocal lengthof the pinhole camera.

Since the model assumes the pinhole to be of in nitesimad,dimm any 3 dimensional poift; =
(xi;vi;z)";z > 0, exactly one ray of light will pass through the pinhole andjgct this point on the
image plane at its image coordinat®s = (u;;Vv;)T. According to the intercept theorems the following
equation holds:

T = )Zl_: :) v = f’_llf (21)

Due to this assumption the projection of the 3 dimensionaldwen the image plane is always in focus.
The projection of a poinP; through the optical center onto the image plane is depictédgure 2.1.

While the image coordinatds;; v;) for any pointP; are uniquely determined by the focal lendth
the reverse cannot be determined. Two 3 dimensional pBjrasidP; are projected on the same image
coordinate, if§—; = é—: and’z’—ii = ‘Z’—j hold. That means for a given pair of image coordingtesv;)" any
3 dimensional poinP; = (Xi;Vi:z)";z > 0on the line going througku;;v;)T and the optical center
O could create the given image coordinates. This followsctlydrom equation (2.1).

To further simplify the pinhole camera model oftentimegirfual image plands introduced. Like
the image plane the virtual image plane is parallel to thagmplane, but it is located at distanicen
the opposite side of the pinhole plane. Every p&nt (xi;yi;z)";z >f is projected on the virtual
image plane in the same way as on the image plane, but the icoageinates are not inverted. Thus
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pinhole plane
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image plane virtual image plane Pi
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Figure 2.2: Pinhole camera model as seen from ¥eaxis. Note that point®; andP; will be projected on the
same poinQ; = (u;;V;)" on the image plane. In front of the pinhole plane the virtnage plane is depicted
with a dashed line. In contrast to the projecti@non the image plane the projection on the virtual image p@ne
is not inverted.

equation (2.1) can be transferred to the generally moreezoest form
! ! ! !
Xi . Xi f
= Zj _) Ui = Zi (22)

yi : Yi
7 Vi el

The pinhole camera model with a virtual image plane is dediah Figure 2.2. Equation (2.2) (or (2.1)
for that matter) implies also some other common effects enpttojection of 3 dimensional objects:
Increasing the distance between an object and the caménasuilt in a smaller projection, since this is
equivalent to increasing; of a given pointP;. Furthermore parallel lines on a plane not parallel to the
pinhole plane will not be parallel in the projection on theame plane. For example image a line on the
X c-Zc-plane, parallel to th& .-axis. For all pointd?; on such a line coordinates andy; stay constant,
while z; varies. Thus the more distant a point on this line is from thigim O the closer its projection
will be to the image centeR and the projection of the line will be at image cenkeon the horizon

of the projection. The projection on the (virtual) imager@anduced by the pinhole camera model is
calledperspective projectioand closely resembles output generated by commonly useeraanApart
from perspective projection, other projection models ngmaéne projection andspherical projection
are sometimes used in computer vision. The properties séthmjection models differ from perspective
projection, which can be bene cial in certain applicatiom$owever, af ne and spherical projection do
not contribute to the remainder of this thesis, so the istecereader is kindly referred to [22] for more
details.

2.1.2 Adaption of the Basic Model

The basic pinhole camera model (see 2.1.1) can be modi eevatral points in order to better describe
properties of real cameras. Most cameras use photographéed instead of a pinhole. Though an
in nitesimal small pinhole in the basic model provides ajprtion always in focus, in reality shrinking
the hole beyond a certain point is not bene cial. The smalerhole becomes, the less light will pass
through the hole and the material on the image plane (eiti&/CMOS-Sensors or photographic Im).
If not enough light is passed through the pinhole the primacimight eventually become dark with
little distinctions, since the image sensor usually rezgiia certain amount of light to be successfully

AN ANALYSIS OF VISUAL MONO-SLAM
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pinhole plane pinhole plane
. YC . YC
image plane image plane P.
V Pi V |
R f O [Yi R f O Iyi
Vi 7 Zi Ze \% o Zj Ze
Qi Qi
(a) Small pinhole (b) Big pinhole
pinhole plane
, Y
image plane P,
\Y,
R f 0] Yi
Vi Zj Zc
Qi

(c) Pinhole with lens

Figure 2.3: Projection under different pinhole¢a): The small pinhole causes diffraction, resulting in a edrr
projection. Furthermore less light than in (b) or (c) is piteal, eventually leading to dark projections, low in
contrast(b): The projectiorQ; of pointP; appears out of focus and blurred, since multiple rays ot liglected
from this point are projected on several different imagerdomtes. (c): Notice that the projection of point
Pi = (xi;yi;z)" isin focus and corresponds therefore with with one singietp®; = (u;;Vv;)T on the image
sensor. Still the lens admits more light than the cameraavinall pinhole (a).

triggered in case of digital cameras. In addition a smaléhnlght cause diffraction and therefore blur
the projection on the image plane. This is visualized in FBg213a. However if the hole is too big, the
projection will be out of focus, since a single 3D poit = ( X;;yi;z)" will be projected on several
image points (see Figure 2.3b). Using one or more lensessfiar a bigger hole to provide more light
and still leave the projection in focus. A graphical comgaini of the three scenarios above is depicted
in Figure 2.3c.

Since most lenses have certain imperfections these need moodeled separately in order to be
consistent with the basic pinhole camera model. How to &xdetermine the imperfections in the lens
of a given camera and how to adapt the model to these imperisawill be discussed in section 2.3 in
detail.

Furthermore in real cameras the world is not projected om@ygé plane, but on a planar light-
sensitive material (CCD/CMOS in digital cameras) of lirditze which will in the following be referred
to asimage sensofor simpli cation. The size of this sensor limits theld of view of the camera. While
in the basic pinhole camera model every pdit= (xi;yi;zi)T wherez; > 0 can be projected on
the image plane, not every point ful lling this condition jBojected on a sensor of limited size. The

AN ANALYSIS OF VISUAL MONO-SLAM



2.1. THE PINHOLE CAMERA MODEL 9

boundaries of the image sensor specify the size of the ela according to the following formula:

I 0 y 1
arctan —dm
Y =2@ A (2.3)
v arctan Ydm-

wheref is the focal lengthUgim  Vdim Speci es the physical size of the image sensor (for example
36mm 27mm)and( ; V)T yields the opening angles of the eld of view. These relati@ne
illustrated in Figure 2.4. In the case of digital camera ¢igna2.3) can also be stated as

I 1

width d
. @arctan e N -
arctan height dv '
v 2f

wherewidth  height states the image resolution in pixels ahdandd, refer to the physical width and
height of a pixel on the image sensor. Placing the image sémsowvay that corresponds to the inverted
image coordinates (i.e. the image sensor is placed upside)dd the basic pinhole camera model (see
equation (2.1)). emulates the effect of the virtual imagapl(see equation (2.2)). Not only does the size
of the image sensor determined the eld of view, but it aldeetf the size and resolution of the created
image. The most commonly resolutions found in low-costtdlgiameras are currently eithi@20 240
pixels or640 480pixels. Since the origin of images in computer applicatimiscated in the top left
corner of the image it is convenient to incorporate this theomodel by shifting the origin of the image

coordinate system. The resulting pixel coordina(tsas,vi)T in the obtained image are calculated by
! ! !

ui. B bkui+ou+0:5c' B bkf’;—ii+ oy +0:5¢ 2.5)

v blv; + o, + 0:5¢c bif £+ o, +0:5¢ '
whereoy ando, describe the displacement of the upper left corner of theefeom its center in pixel
units. If a camera has a resolutionwfdth  height theno, = Y4 ando, = M™9"  Note that

while (ui;vi)T with uj;v; 2 R are tuples of real values, the correspondlng pixel cootdi;(a:i;vi)T
are integer values and only perceivable of the image sefspriv; 2 Z*; 0 u; < width and
0 v; < height holds. Parameteisandl are scale parameter to map the dlstance obtaméd;—bynd
f y' respectively to the correspondlng pixels. If distafictor instance is measured in m, then a pixel

has the dimension q} | , Wherek andl are expressed in pixel=m. Oftentimes the dimensions of a
pixel are denoted a&, d,, whered, andd, are measured in m or any other distance measure. Thus

equation (2.5) is often also denoted as
I ! I

u bdf—x—+ou+050 _ bfy%+ 0, +0:5¢

(2.6)

Vi bé—y—+o\,+0.5c - bf % + o, +0:5¢

where parameters and| of equation (2.5) have been replaced a@yand L Thus parameterk, and

fy express the focal length in terms of pixel-units and are typlcally obtalned by cameafibration
methods instead of the actual focal len@th The distinction betweeh, andf, becomes necessary,
since the physical pixels on an image sensor are not alwaysed, but sometimes only rectangular. To
avoid unnecessarily cluttered equations in the followheyéxplicit rounding to the nearest integer value
will be omitted. Please keep in mind that perceived imagedinates are nevertheless always integer
values.
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image sensor Oimage

Figure 2.4: Field of View. The boundaries of the eld of view, determinby the size of themage sensoare
depicted in blue. The resulting volume could be extendethéurin direction of the positivX . and is just cut
for visualization purposes. The corresponding anglesnithg the eld of view are labeled as, and , (see
equations (2.3) and (2.4)), respectively. Please notetleatrigin for the resulting image (its upper left corner) is
placed aDimage Which is inverted from its corresponding real world positscene -

2.2 A Simple Distortion Model

Section 2.1.2 introduced a rst step to adapt the basic p;nbamera model to represent real cameras
more closely, by means of the eld of view and the adaptionh&f origin to re ect digital image sen-
sors. However the adaptions discussed so far still deseariiperfect” camera. Each real camera tends
to have its own unique imperfections, introduced by impsrfeanufacturing and assembly processes.
Especially in the low-cost sector individual cameras ofgame type tend to vary in their camera proper-
ties. One possible error induced by the manufacturing pisedepicted in Figure 2.5, where the image
sensor is not aligned perfectly parallel to the camera lens.

Since the displacement of the image sensor is unique for pactuced camera a way to analyze
the inherent distortions and to model them is needed. A tsps$s to further modify equation (2.6).
Equation (2.6) implies that the center of the image sensplaised precisely at the ideal image center
R which is the intersection with thg.-axis and the image plane. Considering the CMOS sensor of
the HERCULESWebCam Classic with siz&6 mm  2:7 mm yields640 480pixels of resolution, the
physical size for the sensor of one pixel on the chif:35625mm 0:.005625mm = 5625 m
5:625 m. So any displacement larger théiéz—f’ m would mean that (2.6) is not accurate, still assuming
that the image sensor is perfectly parallel to the pinhcdae! If however the displacement of the center
of the image sensor is known, the adaption of (2.6) becomiés sjimple:

| |
Ui o Tug* o @2.7)
Vd;i fy2+ vo

whereug andvp denote the image coordinate, which corresponds to the iregerR. Similar to
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cheap camera lens i
cheap CMOS chip

cheap glue B Y
(a) Exemplary cheap camera schematics (b) Tangential distortion

Figure 2.5: Exemplary result of production inaccuracga) lllustrates a common displacement of the CMOS
sensor, which should ideally be parallel the the camera I8wugh a displacement induces tangential distortion,
depicted in(b): For an ideal camera the black dots positioned in a grid shbelprojected, preserving the undis-
torted uniform grid structure. The CMOS sensor displacernmetuces the projection of a distorted grid, shown by
dotted black lines. Correspondences between the origiaek lnlots and their projection are shown in blue.

equation (2.6)g.; andvy.; denote integer values bounded by O aidth andheight respectively, while
Ui: Vi Up andvp are given as real values. The coordinates of pgint ( xi;Vi:z)" are also speci ed by
real values, of course. The pagijd;i;vd;i)T are referred to as thdistorted image coordinatggnarked
by subscripty), since they are still subject to lens distortion althouggtytare calculated according to the
actual image cente(luo;vo)T. Distortions like the one depicted in Figure 2.5 are more glarated to
deal with and will be discussed together with radial disbod in the following paragraph.

Flaws and imperfections in a camera are not only limited to ¢brrect placement of the image
sensor, but can (and usually do) also occur in the lens ordgstem of a camera. A compact overview
on properties of optical lenses likeberration or vignettingis presented in [22]. A far more detailed
discussion of these topics can be found in [25, 27].

However once a suitabldistortion modeis applied on top of the current camera model lens effects
like aberration and vignetting can be ignored in thes¥AL MONO-SLAM context and are therefore
not discussed any further. The interested reader is reféorf22, 25, 27] for more information on these
topics.

Closely related to a distortion model is tbamera calibrationprocess. The distortion model de-
scribes how to calculate the ideal undistorted image coatés(uyi; vy:i)" which would be perceived
by an ideal camera from a pair of actually perceived distbiteage coordinate@igq;; vq:i)" for a given
pointP; = (Xi;Vi; zi)T. Camera calibration describes techniques to estimateniig@@ camera param-
eters, used in a distortion model for an individual camerdnistorical overview of different calibration
techniques and their corresponding models is presentet]n The distortion model used by Davison
et al. in [13,16, 20] is a simpli ed version of the “Brown-Cady-model” (also known as “plumb bob
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model”) proposed by Brown in 1965 [8]. This model usedi&tortion coef cientsto describe the im-
perfections found in a camera image. If all 5 coef cients knewn it is quite simple to compute the
corresponding undistorted image coordinates of an ideaéca for a given pair of distorted image coor-
dinates. The next paragraph will present the whole modelarsl offer some explanations concerning
the different components of the model. Subsequently theeinadl be simpli ed to the model used
in [13, 16, 20]. In section 2.3 the techniques used to esérta distortion coef cients will be shown as
well as some exemplary results of camera calibration.

The model of Brown distinguishes between two different kind distortions, namelyadial distor-
tion andtangential distortion Radial distortions are caused by the shape of the used hehsaa cause
pincushionor barrel distortions of the image, where straight lines will be pobgel in a curved fashion.
Usually the effects of radial distortion become strongerléiger the distance between a projected point
Qi =(u i;vi)T and the image cent& = (uo;vo)T becomes. Tangential distortion generally refers to
distortions due to imperfections in the centering of the emariens. To model radial distortion 3 distor-
tion coef cients are usedk(; ko; k3) while tangential distortion is described by 2 coef ciefjps; p2). If
the radial distortion coef cients are known, the correntterms((t; ;Oi)T for radial distortion are de ned

as:
! !

0 .
R B N L Ly L (2.8)
i Vdgi Vo
where
s
1 2 1 2
r= —((ug; uo) + —(vagi Vo) (2.9)

denotes the distance of pix@lq:;; vd;i)T from the image centlug; V)" on the image sensor. To recap
how to calculatgug:;; vd;i)T please refer to equation (2.7).
To compensate for tangential distortion effects the follmyxterms are proposed, incorporating tan-

gential distortion coef cientg, andp:
I 0 1

8 _ @fu 2p1Ug;iVa;i + pa(r?+2uj;) A (2.10)
Y fv pa(r?+2v3;)+2paug;Vva;

wherer is de ned as in equation (2.9).
The complete model, considering radial (2.8) and tangef2i40) distortion de nes the undistorted
image coordinate@u,:;; vu;i)T as
! ! !

Uy;i 0i + dj Uo

Vuii ) OOi + ¥ * Vo 1 (|2.11)
_ @fu w 1+ Ker?+ kor®+ kar® +2pug;va; + p2(r? +2u?;) AL Uo
£, vd;ifvvo 1+ Ker2+ kor + kar® + pl(r2+2V(2,;i)+2p2Ud;in;i Vo
- Z@fué—: Lrhar® +kor+ hor® +2pfuZy+ po r# 2t j\+ o
fvg—: 1+ ker?2+ kor®+ kar® + p; r2+2fv)2% +2p2fv§—:§—; Vo
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2.2. ASIMPLE DISTORTION MODEL 13

Luckily in most cases this full distortion model is not adty@meeded, but can be a bit simpli ed.

As mentioned earlier Davison et al. [13, 16, 20] propose gkied version of the general model.
For standard eld of view cameras (i.e. non-wide angle orf-eye” cameras) it is not recommended or
necessary to push the radial component of the distortionrmkthe 4th order. Therefore only cameras
providing a highly distorted image actually need distartamef cient ks, in other cases it is advised to
assumeks = 0. Currently most manufactured cameras are assembled wighlittee imperfection in
centering the image sensor, so that tangential distorgmofnes less important. This corresponds with
the observations by Zhang [50] who states that the distoftinction is clearly dominated by coef cients
ki andks. In other words for most low-cost cameras the assumpdion p, = 0 is valid. That leaves
a distortion model with just 2 radial distortion coef cienfnamelyk; andk,) which corresponds to the
distortion model used in [50]:

! ! !
Uusi Ugi Ug) 1+ kir?+ kor u
i _ ( d;i O) 1 , 2 + 0 (2'12)
Vi (Vd;i V()) 1+ klr + kzl’4 Vo

The distortion model used by Davison et al. in [13, 16, 20]ugeysimilar to the distortion model
of Zhang [50]. Davison et al. de ne an undistortion functibp that maps a pair of distorted image
coordinategug:;; Vg:i )T to a pair of undistorted image coordina(es;; vu;i)T as follows:

| | 0 1 |
’ ’ . 2 4 ’
dui o, Mo @Udi U Itlafgrkald o uo (2.13)
Vuii Vdii (Vai Vo) 1+Kard+ korg Vo
with
a 2 2
rag= (dy(ugi Ug))“+(dy(vai Vo)) (2.14)

Apart from the distance of the distorted image coordinélt@@;vd;i)T to the image center de ned in
equation (2.14) the distortion model (2.13) used in [1320Bcorresponds to the distortion model (2.12)
of Zhang [50]. For the de nition of distanaein Zhangs's model, please refer to equation (2.9). However
the difference betweenandry also means that the distortion coef cients are generallyegmal (i.e.

ki 6 k; andk, 6 ky). From camera calibration (see 2.3) usually coef ciekisandk, are obtained,
but notks; k. Since (2.12) and (2.13) should yield the same mapping fmira(tpd;i;vd;i)T of distorted

. . . 2 4 .
image coordinates the assumptidns] = kir?, ki = kifz andkord = kor®, ka = ko7 are valid.
d d
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Thusk; andk, can be calculated according to the following equations:
kl = kl—

1 f2(ugi ug)®+f2(vai Vo)
22 @2 (Ugi  u)®+ d2(vai Vo)?
1 f2(ugi uo)®+ f2(vai Vo)?

1 2f 2 2 2
Fafvs2 %(Ud;i Ug)” + %(Vd;i Vo)

1 F22 f2(ugi uo)®+ f2(vai Vo)

=k
trerar2 f2(Ugi Uo)®+ F2(Vai Vo)

(2.15)

and

1 fduagi uo)*+2f22(ugi U (Vai Vo)’ + FA(vai vo)?
2
fafd dd (ugi  uo)' +2d2d2 (Ugi  Uo)*(Vai Vo)° + dd (vai  Vo)*
1 fdUagi Uo)*+2f22(Ugi  U) (Vai Vo)i+ fl(vai vo)?

2fa5a 4 2 2 4
FifVfe e w'+2F7 e W Ve Vo)’ + & (Ve Vo)

1 fHE fHugi uo)*+2f2f2Uai  Uo)®(Vai Vo) + Fi(Vai Vo)

FAM4  fdUai uo)*+2f202(ugs  Uo)®(Vai Vo) + FA(vai  vo)?
1
fa4

:k2

= ks (2.16)
While camera calibration usually obtains offily andf, the focal lengthf can be calculated with the
help ofd, andd,, which can usually be derived from the data sheet of the camerthe remainder of
this thesis undistortion will always be calculated acaagdio equation (2.13). For readability purposes
the use of thesymbol to indicate the distortion coef cients of (2.13) Ik omitted henceforth.

Sometimes it might prove useful or be necessary to obtaia fiven pair of undistorted image coor-
dinates(uy:; vu;i)T the corresponding distorted coordinafeg;;; vd;i)T. For a given pair of undistorted
coordinates are the distorted coordinates are calculated a

I I 0 1
! ! U0+ (Uy;i Uo)
Udi Uy:i _ 1+kir2+kord
\Y I B hd vu.I - @v + _( (Vi;rid Voird)A (2'17)
d;l uil 0 (l+k1l’§+k2l’§)
with
ru=rg 1+Kerg+ korg (2.18)
re= (du(Uui  Uo)?+(dy(Vui Vo))? (2.19)
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2.3. CAMERA CALIBRATION 15

While r, can be directly computed by (2.19), can not be solved directly (see equation (2.18)). Thus
has to be solved numerically, for example by the Newton-Raphmethod. The basic form for Newton-
Raphson iteration is given by

g(Xn)
9°(xn)

Xn+]_ = Xn (220)

whereg denotes a function of,, andgPits derivative with respect t®,,. In order to apply this method
to approximate 4 functiong and its rst order derivativeg®’ need to be de ned as well as the initial value
Xg. For this case equation (2.20) looks like this:

faras = g g(ran) _ ; Fan + Kalgs + Kargy o,
n+l — n - n !
9°(rdn) 1+ Kqrg3 + korgp

Fgo = ru (2.21)

This iteration is performed until > N fora xed N 2 N.
Of course other numerical methods could also obtain an appation for rgy, but for this case
Newton-Raphson is well suited, so that no further methodidoeiconsidered here.

2.3 Camera Calibration

This section will brie y describe how to obtain the parametaeeded by the complete distortion model
(see (2.11)) for areal camera, how to adapt these parantetétse distortion model used in [13,16,20]
and show the results of camera calibration.

Since correctly calibrated cameras are a requirement foyrapplications there exists a large num-
ber of calibration tools, commercial or noncommerciaPERCYV provides its own method for camera
calibration ( see [7]). The EENCV implementation is basically th€ adaption of the Camera Cali-
bration Toolbox for MATLAB by Bouguet [6]. The intrinsic camera model for the calitmattoolbox is
similar to the model proposed by Heikkila [26], which lagebrresponds to the “plumb bob model” of
Brown [8]. The calibration process itself is inspired by 50

To estimate the camera parameters using camera calibeadalibration patternis needed. In the
OPENCV implementation and the MLAB toolbox the pattern consists of a at chequered rectangle
much like a chessboard. Commonly, but not necessarily, Ik land white rectangles are squares and
the whole pattern is rectangular (i.e. the number of coludifiers from the number of rows) to better
distinguish the orientation of the pattern. A typical pattased for calibration is depicted in Figure 2.6a.
Note that the single rectangles do not need to be black antéwlhit this coloring simpli es corner
detection of the single rectangles, which is needed for #meta calibration. It is important that the
pattern is really at so it should be carefully attached tonsorigid surface if printed out. Of course a
real chessboard made of wood could also work perfectly. heumtore the size of the black and white
rectangles needs to be known and should be measured by rarelagrinter might scale its input and
for a real chessboard the squares have to be measured angiterythese preparations some images
containing the calibration pattern have to be captured Wighcamera. Calibration will return better
results, if the pattern is captured from different distanaed at different locations on the image (i.e.
center, left, right, top, etc...). Tilting the calibratigrattern so that it can be observed from different
angles and rotating the pattern can also improve calibragsults, but in each image the whole pattern
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(a) Exemplary calibration pattern (b) Short calibration sequence

Figure 2.6: (a) Exemplary calibration pattern of sizZe 6. Please note that the size is determined by the “inner
corners” of the pattern.(b) Short calibration sequence. The calibration pattern ofigaaptured in different
locations, orientations, at different distances and diffié angles. Please note that for visualization purposkys on
a part of a real calibration sequence is depicted.

has to be visible. Generally the more images are taken foeamalibration, the better, though 15—
20 images usually provide quite acceptable results and snthan 15 images provide oftentimes
noticeable improvements. An example for a short calibresiequence is provided in Figure 2.6b.

Once a suf ciently large sequence of suitable images foibcation is created, these images can
be processed via RENCV or MATLAB toolbox. The main advantage of theeENCV implementation
is automatic detection of all chessboard-corners.Eslhecigth large calibration image sequences this
becomes quite convenient. In the current version of theriMe toolbox the 4 corners de ning the
calibration pattern have to be marked by hand in every im@gethe other hand the MLAB toolbox
provides much more options and information about the caitn. In cases of large distortion it is
possible to adjust the corner detection region for singlages, for example. It also offers a great
visualization of the estimated distortion model (see FagRr7) or the estimated extrinsic parameters
(that means the 3D positions of the calibration pattern theémage) can be shown. The in uence of
the tangential distortion (Figure 2.7b) compared to themete distortion model (Figure 2.7a) is for the
used HERCULES WebCam Classic near to non-existent, which justi es thepdiied distortion model
(see equation (2.13)) as opposed to the complete distartamel (equation(2.11)).

Image processing like feature detection (explained in 3.tone on the original distorted images
in VISUAL MONO-SLAM and not on the undistorted images. The perceived in@gpedinates are
then undistorted according to equation (2.13) stored iftsuAL MoNO-SLAM application and for
prediction purposes distorted again by applying (2.17)avidnmeant by “storing” and “prediction” will
be explained in detail in chapter 4 so the reader should notvedout this now). This might seem a bit
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I
200 300

(a) Complete distortion model (b) Tangential component of distortion model

Figure 2.7: (a)In uence of the complete distortion model (see equatioh1}). The arrows show the displacement
of the corresponding pixels induced by distortion. Notieattmaximal distortion occurs at the top left and lower
left corners, where points are displaced by more than 40giXb) The tangential component of the distortion
model (equation (2.10)). Notice the maximal distortionursaat the bottom right corner where points are displaced
by more than 0.9 pixels.

Both results originate from calibrating agRcuLES WebCam Classic, providing images &0 480 pixels.
Calibration results and images obtained bgAB toolbox [6].

(a) Original image (b) Undistorted image

Figure 2.8: Example for image undistortiotfa) Original image captured by #HRcuLESWebCam Classic. Image
distortion becomes visible near the edges of the image. ffaigkt lines on the calibration pattern on the left and
the corner between ceiling and wall on the top are appeaedutue to radial distortion(b) Undistorted image,
using intrinsic camera parameters and distortion coehtseestimates provided by MLAB toolbox [6]. Notice
that calibration pattern does not appear distorted anynboitehe visible area is slightly smaller than in (a). The
undistorted image was generated usiree@CV (see [7,37]).
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inconvenient at rst glance and one might wonder why the stuted images are not used. The main
reason is that undistortion of a whole image takes quite afltime if the process time to perform all
operations for one image is somewhere between 30 — 60 ms Bi@cndistorted image is not composed
as a direct mapping in terms of pixels. That means that ysaadingle pixel in the undistorted image
is composed of a weighted sum of several pixels in the destarhage. Even though the weighted sums
will stay the same, once the undistortion parameters asgrdated the whole process is still rather costly
in terms of computation. Furthermore the weighted sums mdwyde a little blurring in some parts of the
image which is usually not bene cial for the detection ofeafedly recognizable points in the image (as
explained in 3.1). In addition the undistorted image wilbshess of the scene than the distorted image
(see Figure 2.8). It is possible that some image region guntpa stable feature may be cropped by the
undistortion of the image.

2.4 Triangulation

Section 2.1 of this chapter introduced the pinhole modelckvis used to emulate the projection prop-
erties of real cameras. In 2.2 a distortion model was inttedwon top of the pinhole camera model so
that radial distortion of real lenses can be compensateaveMer one fundamental problem is still un-
addressed. Up until now the whole sensor information gathby the camera is still 2 dimensional and
does not provide any depth information about the projectaidn&nsional world. This becomes apparent
if the basic projection equation of the pinhole model (22}aken into account. Since the distortion
model basically just describes, at which image coordi@ie = (U u;i;Vui)T the pixel at perceived
image coordinat®g:; = (U g:;Vg;i)' would be found on an ideal camera, a properly calibrated came
is not able to gather more information than the basic pinbalaera model.

In the following it is assumed that the camera is correctlibcated and the each image coordinate
Qi = (ui;v;)" is not subject to any further distortion. To simplify thinfysther, displacement of the
image centeR is neglected. In other words the basic pinhole model with/titeal image plane will be
used (see equation (2.2)).

From the pinhole camera model a line on which an observed pyifies can be de ned. If the
projectionQ; = (u;;Vv;)" of P; and the focal length is known,P; has to be somewhere on the lige

0 1

Ui
g: %Vi X: 2R (2.22)
f

Remember that the optical centeris de ned as the origin of the camera coordinate system. &fbes

may be restricted t&R*. However as long as no further information abouis known, the above
equation is not suited to determine the 3D positiofPof

To gain 3D information from normal camera images, at leastébjes taken from a different positions

are necessary. The technique introduced in the followimgliedtriangulation Assume two calibrated
identical cameras observe the same scene. Both camerassérergd in such a way that their pinhole
planes are coplanar and their optical centers are apart bgwarkdistancd, also referred to alsaseline
in stereo visioncontext. Also both cameras are orientated the same waytfiey look in the same
direction). To distinguish the cameras they will be refdrte as “left” and “right” camera and their
corresponding variables will be marked with superscriphdr. Both cameras observe a polt =
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(xi;Yi;z)T which is projected a®! = (ul;v))T andQ! = (uf;Vv/)T, as depicted in Figure 2.9. Without
loss of generality it is also assumed thbt: v holds, but the equations below could be extended to the
more general case wit} 6 V. Observing the same poiRt in two different images allows for a depth
estimation and subsequently for a estimation of the actDgb@sition of P;. According to the intercept
theorem the following holds:

zo f_QQf_b (u u)

2.23
Zi b b ( )
withf = f! = {7 (since both cameras are identical). From (2.23) followsddly
b (u u)_ b _ _ bt bf
Tt n ) T w w (229

with uj = ul  ul, baselineb. Distanced is also known as thdisparity. For a visualization of (2.23)
and (2.24) please refer to Figure 2.9. Equation (2.24) esplhat the deptl; of point P; is inverse
proportional to the disparity u;. That means that if the disparityu; is large, a small change in the
disparity does not change the degthmuch. However if u; is near0 a small disparity change evokes
a large change in depth. This also implies that the deptHut®o obtained by triangulation decreases
the farther away an object is from the optical center of a cameo illustrate this fact, please consider
the following example: Assume two cameras Wit 200 mm:f' = f* = f = 8mm;dy, = d, =

8 m; 2 fl;rg, whered, describes the physical size of one pixel in direction of thaxis on the
image sensor indicated by Three different points;; P; andPy are observed with their corresponding
depthzi = 1m;z = 10m;z = 100 m. Describing the deptl; as a functiorh dependent from u;
according to (2.24) follows:

bf bf _ 1600
h( Ui)=2i:—ui:) uizzzmmmzlﬁmm
The smallest detectable change in the disparity correspaitti the physical pixel sizd,. This gives:
bf 1600
h( u+dy)= G d 1:608mm 995 mm

That means at a distance bfn the exemplary setup can distinguish between differenceketh of
5mm or more. Analogously foP; andP follows:

bf 1600
= —= ——mm=0:16
Y=z T 10000 mm
bf 1600
h i +dy)= = 9523 = 9523
U+ d)= =g, = ozes™” mm m
bf 1600
= — = — =0:01
Uk 2 100000mm 0:016 mm
bf 1600
h( uc+ dy)= = mm 66666 mm = 66666 m

ug+d, 0024

Thus at a distance df0 m the smallest difference in depth the exemplary setup is tabdistinguish is
477 mm = 0:477 mand for far away objects like poift, the depth resolution decreases dramatically to
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33:3m. This is an inherent problem of stereo vision. Though depsblution for far away objects can be
increased by increasing baselinthis does only help to a certain degree, since depth resoldties not
decrease linearly (as shown above). Furthermore an irextdaesseline might inhibit depth estimation
for close objects, since close objects might not be in thd adlview of both cameras.

Triangulation can also be used to estimateandy; (2 fl;rg) of pointP;. If b; U andu! are
known the following equation holds:

iUy o =Y. :
2 : ) X zIf ; 2fl;rg (2.25)
Analogouslyy, can be estimated, i is known:
Yi oYy oy == Vi :
Z : ) Y =z o 2flrg (2.26)

Thinking of both cameras as ostereo camergives a new optical centé. at %. Since the camera
coordinate systems of the “left” and “right” camera had thme orientation, they are simply substituted
by one coordinate system with the same orientation and iggnon O;. While equation (2.24) is not
affected by this modi cation, (2.25) has to be slightly chhad to

Xit3_ Uy -,u b
i A i
Substitutingz; according to (2.24) gives
bfu! b b b b 2ul uloul b ul+uf
i = I Ir 5= Iqr 5~ 5 I Ir : Ir Y : .I (2.27)
f(uy u) 2 u u 2 2 u u u U 2 Ui
| | |
Vi bfv; b 2v;
VEAT TR w2 (2.28)

Usually the camera setup is not as convenient as depicteidume=2.9. Even in off-the-shelf stereo
cameras the pinhole planes are generally not perfecthaoapland some other constraints might not be
satis ed. In theory it should still be fairly easy to computee depthz; of point P; observed by two
cameras. As stated in equation (2.22) for each camera adimée& de ned on whichP; has to lie. If
the position of the optical centers of both cameras and thnigintation in the world coordinate frame are
known, pointP; should be at the intersection of lingsandg’. Whereg' denotes the line from equation
(2.22) of the “left” camera transformed in the world coomti|m system and' the transformed line of
the “right” camera. In reality however, chances §bandg’ to intersect a quite small, due to calibration
errors and the discrete nature of the image sensor withstecaged depth resolution. One approach to
solve this problem constructs the line segment perperafitaly andg'’, intersecting both. The center
of this line segment is closest to both lines and thereforeeanimgful estimation foP;. Several other
approaches exist as well, but are beyond the scope of thisthiEhe interested reader is referred to [22]
for more details.

Up until now a setup of two cameras (or one stereo camera)cosigdered. In a static environment
the same methods can be applied with a single camera. Keemihthat one requirement is that the
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b

Figure 2.9: Triangulation from 2 cameras. Since the pinhole planes tif bameras are coplanar and their viewing
direction is the same, in both camera coordinate systemdepih for pointP; is the same! = z and therefore
only labeled once az in the image. Of course this does not hold necessarily foiother coordinates of; .

In the depicted scenel 6 x! holds. The individual optical centers are denotedhsandO' respectively. If
both cameras are combined to a stereo camera the optical &nis in the middle of lineD'O", marked in red.
Please notice that the virtual image plane is depicted adstd the image plane to directly correspond with the
used mathematical formulation.

position and orientation (quosg of both cameras need to be known. Therefore in a static@mvient
there is no difference between two cameras observing ppiat the same time from given posgsand
p" or one camera observirig at two different times from poses andp'.

Above it was always assumed that for a 3 dimensional gRjint ( x;;Vyi;z)" the image coordinates
Ql =(u!;vhT andQ! = (u!;v)T of its projection in two imagek' andl " are known. In reality this is
most often not the case. How to nd a correspondence in image image coordinat®! = (u!;v)T
of imagel ' will be shown in chapter 3.
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Chapter 3

Image Processing

Chapter 2 dealt with camera models and how to estimate the8mRiinates of a poir®; = (Xi;yi;z)"

observed in two images from two given different pope®’ . Up until now it was assumed that both
projectionsQ! = (u!;vl)T andQ! = (u!;v!)T of point P; on both image sensors are known. While
that is true if we assume th&, p' andp’ are known, the camera position and orientation and point
positions are not known in thel'SUAL MONO-SLAM-scenario, but need to be estimated. Establishing
correspondences between two projectiQ{Is: (u !;vi')T andQ! = (uf;vh)T of point P; on the image
sensor are crucial for depth estimation (see section 2dttaarefore for the whole MUAL MONO-
SLAM approach.

This chapter will discuss how stable pairs of image coote®m@! andQ! can be detected in two
images observing the same scene from slightly differenega@sn be established. Furthermore some
basic image processing techniques are introduced. Firgefidverview of the used terminology and
data structures in computer vision is given in the next paaty

The origin of an image coincides with the top left corner imguter vision, so that the top left pixel
is at position(0; 0). Accordingly if the image has a dimensionwidth  height the other corners are at
positions(width  1;0), (0; height 1) and(width  1;height 1). Each pixel in turn is represented
by an 8 bit value in case of gray-scale images, thus providb) different shades between black and
white. Color images usually use three 8 bit values to repitasee pixel. Their meaning depends on the
used color model (HSV, YUV, CMY(K)...), among which the RG8lar model is probably the most
widely known and used. In the RGB model the rst 8 bit valueresents the amount and intensity of
red for the current pixel, while the other two values reprégeeen andlue. For more information on
color models, their advantages, disadvantages and metfiadsversion, please refer to [22]. In the
following only gray-scale images are considered, if notliekfy stated otherwise. This is in accordance
with most image processing techniques, since gray-scadgésare less noisy than color images and
usually provide suf cient information about the environnte

Firstly it should be noted that in image processing almogente complete raw data of an image
is used. This has two main reasons. The rst and more impor&ason is that raw image data tends to
be relatively unstable and is as such quite infeasible forgarison between two images. For example
in theory motion in a sequence of images taken from the samse gauld be detected by just comparing
each pixel with the pixel at the same position in the subsatjimeage. If the pixel in the subsequent
image has not the same gray-scale value (or values in caséooiimages) one could assume that some
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(@) (b) (c) difference of (a) and (b)

Figure 3.1: Image sensitivity to lighting conditions. In sub gurés) and(b) are two images taken subsequently
by HERcULESWebCam Classic. Though they appear the same, due to slighgel in lightning conditions they
actually differ.(c) depicts the difference as binary images. Pixels in whitecité a difference between the pixels
of (a) and (b) larger than a given threshold, while the difere of black pixels is below the threshold. Used
thresholds are 186:7% white pixel), 4 85:9%), 7 (2:6%) and 10 0:5%) from top left to bottom right.

movement in this area has occurred and thus a different objét a different gray-scale-value (RGB-
value) is observed at this pixel. In an ideal environmerd tid@ive approach might work, in reality there
will be too much noise in the images for this idea to be feasillameras tend to be extremely sensitive
to changes in lighting conditions (see Figure 3.1). Esplgciicameras are used outdoors lightning
conditions will change and vary constantly.

The second reason is just the amount of data which would beaitipal in many applications.
Consider that a common low-cost camera like thterRidULES WebCam Classic provides a resolution of
640 480 = 307200 pixels per image. Dependent on the frame rate of tme@a30 — 60 ms can be
used to establish correspondences, estimate 3D positiortefected correspondences and what other
operations might be necessary in an online application.t Woald (in a very naive implementation)
leave up t00:1953 sto try to nd a suitable correspondence in the remaining 3@/dixels for each
single pixel, not taking into account that usually other pomations have to take place as well.

Furthermore a single pixel does not contain much inforrmatishile an aggregation of adjacent
pixels may indeed contain more information than its indinibparts. Such an aggregation is commonly
referred to ageature Different feasible techniques exist how to select pixelsreate such a feature, but
mainly the common goal is to create more robust measuresnopanson between different images or
to establish correspondences between posit@ns (u!;v))T andQ! = (u!;v/)T that belong to the
same 3D poinP;, observed in imagels andl".

Section 3.1 will introduce some approaches to detect feafiara given image and discuss their ad-
vantages and disadvantages. Afterwards section 3.2 wdlpuliscuss some general techniques related
to image processing.

3.1 Image Features
As stated above robustness and repeatability are two magds pr features detected in an image. This

section is divided into two further subsection, which wilepent two different approaches to tackle this
problem. In subsection 3.1.1 early approaches will be ptese generally called corner or interest point
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(a) Original Image (b) Sobel Filter (c) Canny Edge Detection

Figure 3.2: Edge Detection: To the original imada) two different edge detectors were applig¢td) shows the
result of the so called Sobel Iter , whilé) depicts the result of the canny edge detector [10]. Notie¢ tine
edges in (b) are much thicker than in (c), which might not glvbe desired. Output however depends in both
techniques heavily on the used parameters.

detectors / operators. Though not as powerful in themselsdater approaches presented in subsection
3.1.2, they still have their appeal nowadays, mainly bezadisheir fast and easy computation.

Furthermore as a preface before the details of implementatie introduced, a short de nition of
terms is needed. In the literature the tewnaner, interest pointandfeatureare used somewhat ambigu-
ously. In this thesis corner and interest point will botheretb a speci ¢ position in the image and the
pixel present at this location. How such an interest poiffiedi from normal pixels will be explained in
3.1.1. Afeature is de ned as an interest point with the addibf some comparison measure.

3.1.1 Corner Detectors

To achieve the robustness a common technique is to detegeimegions with a high gradient (i.e.
corresponding to visual edges). Several approaches fa détpction exist, among which tigobel
operatorand Canny edge detectdd0] rank among the most popular and their results are degbiict
Figure 3.2.

Edges detected in one image usually have a good chance tédmtediein subsequent images. How-
ever to establish correspondences for single 3D pointsetkfd triangulation (see section 2.4) edges
are not suitable. While edges show a large gradient in thgémata perpendicular to the direction of the
edge, responses to image Iters moving along the directfdh@edge are often very similar. Therefore
it becomes dif cult to establish pairs of image positid@# andQj, even if corresponding edges in two
images are detected, as long as the camera movement is umkidws is also known as thaperture
problem

To improve repeated detection and thus establish pairssitigmes belonging to the projection of the
same 3D point it was proposed to use corners instead of edigslly one would expect a corner to
be at the intersection of two edges, but most so-called catekectors actually nd also edge endings,
local intensity maxima or minima or points at local maximah@ture along a curve. Please keep this in
mind if the term corner or corner detector is used in the foithy.

One of the st algorithms to detect such interest points wamppsed by Moravec [34]. Moravec
de ned a corner as an image point with low self-similarityhig is tested for each pixel in an image by
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comparing a small squared image patch around the pixel Wihnhage patches of adjacent points in
vertical, horizontal and two diagonal directions. For patomparison theum of squared distances
SSDfor short is calculated. The minimum of the calcula®80s will be the interest measure for the
current pixel and local maxima in the interest measure atdian interest point at the current pixel. For
uniform areas the interest measure will be close to zerogsheSSDshould not differ signi cantly. If an
edge is present in the direction perpendicular to the edg@3Dwill be great, but in direction of the edge
it should be small. This way edges should mostly be rejesiede the minimum of the calculat&5Ds

is used as interest measure. The main weakness of thisateitepbssible false classi cation of edges
as interest points. Moravec proposed angle$mobetween the directions used 86Dcomputation. So
edges with angles of odd multiples of approximat2®s might be detected as corners.

To create an isotropic detector Harris and Stephens [24jawenl on the main idea presented in [34].
Their detector is widely known as the “Harris corner” operdtdetector in computer vision literature. In
order to make their detector isotropic, the weighted sungoéeed distance$SELy) is used to compare
image patches. TH&S0), over an image patchwith dimensiongpy,+1 pn+1) compared to a patch
of the same size shifted l{x;y) in direction of theU andV axes of the image can be de ned as:

Rw Wh
SShy (xy) = w (U V) (1 (upv) T ((u+ XV + y))? (3.1)
u=0 v=0

wherel (u;v) 2 Z*  255denotes the gray-scale value of atimage positigv) andw (u; v) the cor-
responding weight. The terin(u + x;v + y) of equation (3.1) can be approximated by Tailor expansion
as
I I
L(u+x;v+y) | (uv)+ X%J y%\/
Where@hand %{,denote the partial derivatives b{u; v) in direction of theU andV axes of the image.
The partial derivatives in turn are easily computed by

h i

%L= 101 (3.2)
2 3

@._, 3 olg 3.3)

@v X '

wherel  k indicates the convolution of the image with the speci edradik. These approximations
allow for (3.1) to be written as

XW )Qh @I @I 2
SSOy (X;y) w (u; V) X@J’ y@u (3.4)
u=0 v=0 " # I
Xw Yn @? @@l
= Xy w(uv) 89 D8
u=0 v:p @u@v @v
X
= x y H
y
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whereH is called “Harris” matrix. To actually achieve an isotroletector, the weighting function
w (u; v) should be smooth and circular around the center of imagén patike the Gaussian function:
0 1
u P24y B2
2 A

w(u;v) =exp @ >

wherepy, andp, denote width and height of patgh To determine whether a corner is present at
the center of the selected patphor an edge no distinguishable element is present the Haatsix

is examined more closely. Dependent ondigenvalues ; and » three different cases need to be
considered:

If 1 Oand » 0, nointerest pointis present
If 1 Oand , 0, anedge is detected
If 1 Oand » 0, acorneris detected

To avoid computation of eigenvalues in [24] the following asare for thenterest respons® is pro-
posed:

R= 1, (1+ 2)%=det(H) trace(H)? (3.5)

where parameter is a constant that has to be determined empirically. For &mdat responsR 0
a corner at the center of the patch may be assuied, 0 corresponds to an edge aRd 0 implies
no distinguishable image region. Additionally only thos@nts, where the interest response forms a
local maximum are actually considered to be corners. Depireh the application these points can be
further Itered by applying a minimum interest resporRgin 2 R* as an additional threshold. Results
of the Harris operator depend heavily on the given parammetier, Ry, and the size of the compared
image patches, thus nding the right parameters for a speapplication might take some ne tuning.
OPENCYV provides a ready- The defaultP@NCV settings are image patches of ske 3and = 0:04,
but can be changed to adapt to the needs of different agphicatenarios. Exemplary results of the
Harris operator are depicted in Figure 3.3.

Closely related to the Harris operator is the detector pitesiby Shi and Tomasi in [42]. The results
of this detector are sometimes referred to as “Good Featar&sack”, named after the title of their
rst publication. Shi an Tomasi showed in their experimetitat min ( ;; ») though more costly to
compute provides a better measure for corner strength tharest response (see (3.5)). Finding the
appropriate parameters for the Shi Tomasi detector isa@raod might be somewhat tedious just like in
case of the Harris detector. On the bright sight the Shi Toehetector has just 2 parameters to adapt,
namely response threshold and patch size. An implementafidghe algorithm can also be found in
OPENCV. In [13, 16, 20] Davison et al. use this interest operatont suitable candidates for features.
An exemplary application of the Shi Tomasi detector on argienia depicted in Figure 3.4

The corner detectors discussed up until now are able totdeterest points in an image which can be
recovered in a similar image with high probability. Howeweeans of comparison between the interest
points of two different images are needed, since the inteesponse itself does not contain enough
information to ensure an appropriate pairing. A common eg@gh is to compare image patches with the
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(a) low threshold (b) high threshold

Figure 3.3: Harris Corner Detectorfa) shows the result of the Harris detector for image patchewzefs 3,
= 0:04and a low threshold (dependent on the strongest intergzdmes for the image)b) depicts the results
using a high threshold, while leavingand the patch size unchanged.

interest point at its center from the different images. &wveomparison techniques of image patches
are discussed in detail in 3.2.2. The interest points tagetfhith their associated image patches and an
appropriate comparison mechanism compose a feature,diagdo the de nition in the beginning of
section3.1. Still these interest point operators suffemfisome limitations. Namely they are rexale
invariant or rotational invariant Scale invariance means that an interest point is detentégddges,
depicting the same scene from different distances, whisthltein projections at different scales on the
image sensor. The lack of this ability is inherent in the darmgpmputation of the detectors described
in [24, 34, 42]: Observed from a different distance (i.e. idifferent scale) interest points may vanish
if several pixels are combined to a single pixel (zooming) @auta previously single pixel might be
represented by a number of pixels of nearly identical intgr{gooming in). A common technique to
achieve scale invariance in image processing is the saldeligge pyramidf images where one image
is scaled to different resolutions, thus simulating zoarimand out of a scene. However this is more
of post-processing step, possibly including accumulatibeeveral interest points detected at different
scale into some combined information and would diministctiraputational fast properties of the corner
detectors. Details to the concept of image pyramids can tedfan [1].

Rotational invariance in turn means that an interest pointikl be detected and successfully matched
if the camera is rotated around Eg-axis. While the detection of interest points in a rotateswiloes not
pose a problem to the Harris operator and the Shi Tomasitdetsince they are isotropic, establishing
correspondences to interest points of an image under aatiffeotation poses a problem. If the rotation
is not known and large, the comparison of two image patchesgsction 3.2.2) will most likely fail.

In the following subsection some feature descriptors arediuced which gained popularity in recent
years. Though computational costly, they are scale antlon#d invariant, robust and provide their own
means of comparison.
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(a) low threshold (b) high threshold

Figure 3.4: Shi Tomasi detectoi(a) depicts the results of the Shi Tomasi detector using a loastiwld based on
the strongest response in the image, whilgina high threshold is used. In both cases the size of the imagk pa
is3 3 pixels. Notice that the results of this detector are venyilainto the Harris detector depicted in Figure 3.3,
albeit not exactly the same.

3.1.2 Feature Descriptors

The algorithms introduced in this subsection detect istegpeints and compute for all suitable feature
point candidates descriptor The descriptor is basically a vector which stores all tliermation needed
to compare one feature with another one. The descriptor mimesontain raw image data like an image
patch, but higher level information calculated from the enying image data and transformed in such
a way that the contained information becomes scale andaw#htinvariant. The computations for a
feature descriptors is, compared to the computations wefedeorner detectors (see subsection 3.1.1)
and retrieving an image patch surrounding the corner, gosgly, so that the calculation of the features
presented in the following will be slower compared to cordetectors. Still many computer vision
applications employ feature descriptors, especially endbmain of object recognition. Typically in this
application scenario multiple descriptors are used torimsa single object. For real-time applications
with high frame rates (30 — 60 ms) where computational speedrbes crucial usually simpler features
based on corner detectors are used.

In the following the algorithms for two feature descriptare sketched. Firstly the “Scale Invariant
Feature Transform” (SIFT) which was introduced by Lowe [32}-and can be considered as one of the
most successful and widely used feature descriptors t&kgondly the “Speeded Up Robust Features”
(SURF) by Bay et al. [4] which re ned some ideas presented3®B2]. Both algorithms will be
introduced brie y only, since a detailed discussion wouddh®yond the scope of this thesis.
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SIFT Scale invariant interest points for SIFT-features are fbiaund by the calculation difference
of GaussiangDoQ over an image pyramid (see [1]). TB®Gis de ned as

D(uv; )=L(uvik ) L(uv; ) (3.6)

(G(uvik ) G(usv; ) 1 (u;v)

withL (u;v; )= G(u;v; ) | (u;v)where denotes the convolution of image€u;v) and Gaussian
kernelG (u;v; ) de ned as

1 (U? + v?)
5 exp 52

G(uyv; )= 5

To ef ciently calculate (3.6) the imagk (u; v) is repeatedly convolved with the same Gaussian kernel
G (u;v; ), until is doubled. The convolved images are stored andh&is computed by simply
subtracting each convolved image from its predecessore Omg doubled the last convolved image is
rescaled to half its original size and the process begins &néh much less computational cost). Please
note that instead of rescaling the image, convolving theerfarther would yield the same result, but the
convolution of a smaller image is more ef cient in terms ohgoutation. All images until is doubled
(i.e. images of the same size) composeoatavein the terminology of [30—32], while the convolved
images in the same octave are in differecdéle Potential interest points are at local minimal or maximal
in theDoGs. These are detected by comparing each pixel with its 8 heighon the same scale and the
9 neighbors on the scale above and below. A schematic oflthesitam is depicted in Figure 3.5.

Please note that tH2oGis a computational ef cient approximation for the Laplatiaf Gaussians.

In [29] Lindeberg showed that the Gaussian function is tHg suaitable kernel for scale-space. Mathe-
matical details why th®oGclosely approximates the Laplacian of Gaussians can belfioui32].

After obtaining the potential key points, these are ttedwsgub-pixel accuracy to their correspond-
ing local extrema (i.e. the key point will usually not copesd to a single pixel, but refer to a position
Usub; Vsub With Ugup; Vsup 2 R* with 0 ugyp < width and0  vgy < height, wherewidth and
height specify the dimensions of the image). How this is done, idampd in detail in [9]. After the
correct position of the interest point is determined thecfiom values at this point is compared with a
threshold, rejecting low function values (i.e. local mimirand maxima with a small absolute value) to
ensure stable interest points.

Since theDoGalso has strong responses along edges and edges make fdoqaiation due to
aperture the remaining points are ltered once more. Sinkdladges in 3.1.1 where the interest measure
alongside the edge was small, the principal curvature adongctual edge would be much smaller than
perpendicular to the edge. The principal curvature can terméned by obtaining the eigenvalues of the
HessianH of the DoGs de ned as

" #
H — DLIU DLIV
DUV DVV

whereD denotes thé&oG(see 3.6) and ;D ; Dy are the partial derivatives along the andV -

axes. Partial derivatives are calculated by convolutiothefimage according to equations (3.2) and
(3.3). Similar to the Harris detector [24] (see equatio®)Bthe actual computation of the eigenvalues
can be avoided, since just their ratio is of importance. & tatio of both eigenvalues differs strongly
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(a) Octaves and scales in SIFT

Figure 3.5: Image pyramid of SIFT-algorithm(a) depicts the construction of tH2oGs. To get from one scale
image to the next scale (shown in yellow), the current scanvoluted withG (u; v; ). The stored scales are
used to calculate thBoGs. In (b) the neighbors for a potential interest point are shown. Tiberést point is
displayed in red, while its neighbors are colored in greenthBgures (a) and (b) are based on gures shown
in [32].

from 1 the interest point can be assumed to lie on an edge. To olttaimatior of the eigenvalues
1; 2 the following method is proposed. Without loss of geneyatitan be assumed thai 2 With
1=r 2;r 2R";1 r. This assumption yields

trace(H)? _ (1+ 2)2_ (r 2+ 2% _ (r+1)?2
det(H) 12 rz

The termw has its minimum for equal eigenvalues (ire= 1) and increases for other valid values
of r. In[32] a use of = 10 is suggested. That means when the ratio between the eigesvaécomes
grater thariLO the interest point is assumed on an edge and subsequerntiydbis.

The remaining interest points will be assigned a orientaitioorder to ensure rotational invariance.
This way the information contained in the actual descrifsee below) can be represented in relation to
the assigned orientation. Orientation for an interesttpwith be determined by calculation of a gradient
histogram in a region around the interest point at its cpoading scal® (u;v;k ). According to their
direction the gradients are arranged in the different biris@histogram and weighted with their magni-
tude. Thus a gradient of great magnitude becomes more itialdhan a gradient of small magnitude. If
resulting histogram does not clearly indicate one directan interest point may also be assigned more
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than one orientation. For details of this process pleass tef[32].

After suitable interest point locations were found by themvimus steps, made scale and rotational in-
variant, the actual measure of feature comparison needsdoristructed, namely the feature descriptor.
The information contained in the descriptor should makefélature more robust, taking into account
different lighting conditions for example. To calculate tliescriptor a vector is constructed by calculat-
ing gradients in a neighborhood around the interest poidtvegighting the gradients according to their
magnitude and a Gaussian with the interest point as its miaim all 4 4 histograms are computed
around the interest point location, each histogram coimgi®bins. The resulting information is written
into a vector of sizel 4 8 = 128. To make the feature descriptor robust to changing illutiona
conditions, the vector is normalized (further details ig])3

SIFT-features are matched by nearest neighbor search:eBeédptor of a feature in the rstimage is
compared to all descriptors found in the second image (aase of object recognition with descriptors in
a database containing the information for speci ¢ objedi¥tance between two descriptors is measured
by the Euclidean distance. The closest distaticbetween two descriptors is compared to the second
closest distancd,. If the ratiog—; is above a certain threshold (in [32] a threshold of 0.8 igegted) the
match is discarded due to ambiguity, in all other cases &spandence between the nearest neighbors is
assumed. Please note that SIFT does approximate the negigdgbor search by the so callBést-Bin-
First algorithm which usekd-trees. This especially becomes important for object reitimg tasks with
huge numbers of features, since a complete naive neargsifxaeisearch would be very time consuming.

SURF SURF-features, short for “Speeded Up Robust Featuresddated by Bay et al. in [4] seek to
reduce computational effort, compared to SIFT, while stidlintaining a high rate of correct matching.
In the implementation of SURF-features another method tbinitial interest points is used. Instead of
the Laplacian of Gaussians (which was approximated bypti@for SIFT-features) the SURF detector
is based on the determinant of the Hessian Matrix of Gaussepgorted in [29]. The Hessian detector is
de ned asdet (H (u;v; )) with
" #
Luu (Usv; ) Luv (usvs )

uv: )= Lo (U;v; ) Lw(u;v; )

3.7)

whereL y, (u;v; ) = %u denotes the second order derivative of the Gaussian cdinmolof the
image (see 3.6). The Gaussian kernel is therefore convalvieg according to equation (3.2) before
being applied to the imageL,, andL,, are de ned analogously. The Gaussian convolution is in
practice accomplished by using a discretized and croppetekef xed size. In [4]Lyy; Ly andLyy
are roughly approximated by box lte@,,, Dy, Dy (see Figure 3.6).

Since the approximation with box Iters is rather coarse gechanging- y,, Ly andL,y in equa-
tion (3.7) will yield different results from the original l4eian detector. To better emulate the Hessian
detector Bay et al. propose

det(H (u;v; )) DuwDw (0:9Dw)? (3.8)
This approximation is justi ed by observing

KL uv kF kD uu kF

m =0:912::: 0:9 (39)
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Figure 3.6: Gaussian Kernels and Box Filtefg) shows a discretized kernel fbg, (u;v; ) (see equation (3.7)),
with = 1:2. Below in(e) the 3D plot of the kernel is depicted. Please note that(u; v; ) can be achieved
by rotating (a) by 90. In (b) the kernel forL, is shown and its corresponding 3D plot is depictedf)n (c)
and(g) picture the box IterD,, approximating toL,,. Accordingly box lter D, displayed in(d) and(h)
corresponds to (b) and (f). Note the different scales of thessian kernels (e) and (f) compared to their box lter
approximations (g) and (h) which results in the adaptiorheftiessian detector in equation (3.8).

wherek kg denotes the Frobenius normy,, Ly the second order of a Gaussian convolution with
standard deviation = 1:2 andD,, Dy the corresponding box lters of siz8¢ 9 (see Figure 3.6).
Equation (3.9) yields the the ratio of the resultant contiotuof box Iter approximationsD , to Dy
compared with the ratio of the convolution bbf,, andL,. This in turn gives a valid measure how the
determinant has to be modi ed, leading to equation (3.8).afiance of = 1:2 and box lter of size

9 9are the initial values in the original SURF implementatignBay et al. to detect scale invariant
interest points.

Before the box lters are applied, thategral image(see subsection 3.2.1) of the input image is
created. Integral images allow for a fast alternative tarttege pyramid: Instead of iteratively applying
a lter to the output of the previous layer and sub-sampling image for the next octave the lter size
is increased. This has basically the same effect, but isllysuat done, because increased lter sizes
usually greatly increase the needed computations. Hovsinee box Iters are applied to an integral
image, the computational effort to calculate the resulhdependent of the Iter size. And since all
Iters are applied to the same integral image the whole pgeamuld easily be done in parallel, taking
advantage of multi-processor platforms. Similar to SIFa@teptial interest points are detected as local
extrema in a neighborhood on their and the adjacent scafesswaards the location of the interest points
is calculated to sub-pixel accuracy, also using the appro&{9].
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/ 1- .
€) (b)

Figure 3.7: Object recognition with SURF-features in cluttered deskirmmment. The object is shown in the
upper left corner ofa) and(b). Estimated correspondences are indicated by red linesicéNthitat both cases
(a) and (b) contain false matchings (though more obviougajh However the majority of features are matched
correctly, therefore object position and orientation ia tlnage can be estimated.

Next the orientation of the feature will be estimated. Pdeaste that there also exists a version of
SURF, called U-SURF where the step is omitted and oriemtadticassumed to be upright. Since the
camera will not heavily rotate around its owiy-axis in many application scenarios this is a sensible
measure to reduce computational effort in these casesealhsif using histograms of gradients like
SIFT, SURF determines the orientation of a feature by catog several Haar-wavelet responseslin
andV direction at different scales. Since Haar-wavelets are beps, the already constructed integral
image can be reused. The descriptor itself is also conettumitwavelet responses over a squared area,
centered at the interest point and rotated accordinglye@taviously determined orientation. In order to
speed up the comparison process of features SURF-featigedescriptor of sizé4 (instead of SIFT's
128), which increases comparison speed. The actual compansoks just like for SIFT-features.
Exemplary object matching, using SURF-features is degiicté-igure 3.7.

An interesting comparison between SIFT and SURF can be foud@], where features in outdoor
images taken during different seasons and thus very diffdighting conditions are compared.
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3.2 Basic Image Processing Techniques

Many applications in computer vision bene t from high framaes. M\suaL MoNO-SLAM makes no
difference and update frequencies signi cantly below60 Hz will seriously hamper the performance
of the algorithm. High frame rates of course imply that altded computations for one image need
to be done before the next image is retrieved, which leavémea window of 30 — 60 ms per image,
dependent on the frame rate of the used camera. In this tindowi existing features need to be matched,
eventually new features need to be acquired, all computatgsociated with tHextended Kalman Iter
(see section 4.1) need to be completed and results need teuadized. On this account it is important
to speed up computations as much as possible, even thougmpiies some inconvenience on the
implementation of algorithms, since naive solutions whacé easy to program and understand tend to
perform rather slow.

To provide a short example for this remark consider the mpration of image data. Since images
are 2 dimensional it seems convenient and natural to reftrase3 bit gray-scale image of sizédth
height as a two dimensional arragng [width] [height] of char or any other 8 bit data type. This way
the pixel at position(u;v)" could simply be addressed by usimg[u] [v]. During image processing
oftentimes data needs to be temporarily copied, allocdteed and addressed. Since all the above
mentioned operations perform much faster on one dimenisamnays, usually images are internally
represented dmg[width height]. That means of course that addressing a fixgV) " becomes less
convenientifng [width v +u]).

In subsection 3.2.1 the concept of integral images will lesented, which are used in the SURF
algorithm and prove also bene cial for other purposes. €héer the topic of image patch matching
is discussed in subsection 3.2.2 which will also serve tongtary illustrate the importance of ef cient
computation in image processing.

3.2.1 Integral Images

Integral imagesvere rstintroduced in 1984 by Crow [15]. Each pixel in anggtal imagdnt contains
the sum of the intensity of all pixels to the left and abovelo$ fpixel in the original image and the
intensity of the pixel itself. Formally this can be expresss
X X
Int (u;v)= I u®vO (3.10)

ud uvo v

wherel (u;v) denotes the gray-scale value of the pixel at posifioyv) in imagel . The computation
of (3.10) can be done ef ciently in a single pass over imad®y employing

Int (u;v)=1(@U;vW+Int (u L,v)+iInt (u;v 1) Int (u Lv 1) (3.11)

To further speed up the computation oftentimes an additioslamn above the rst column and an
additional row left of the rst row are added to resultant theegral image. These rows are lled with
0Os, so that equation (3.11) can be employed without any dpemisideration of the boundaries. From
(3.10) and (3.11) follows that computational cost for thegnal image is ifD (n) wheren is the number
of pixels contained in one image (per pixel 2 additions andttraction are needed).

Still the bene t of integral images might not be obvious astr Once constructed, an integral image
allows the summation of the image intensity in a rectangatea speci ed by its four corners in constant
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Figure 3.8: Summation over rectangle in integral image. To get the suthefntensity of all pixels inside the
rectangle given byl andlIr (colored in gray) the rectangle speci ed I§9;0) andIr is added to the rectangle
speci ed by(0; 0) andul. The rectangles marked by vertical lines (de ned(By0) andur) and horizontal lines
(de ned by (0; 0) andll) are subtracted. Due to the nature of the integral imagedbkded sums can be accessed
by 4 simple references (see equation (3.12)).

time. Consider the corners of a given rectangle as uppefugftvy ), upper right(uy ; vyr ), lower left
(uy; vy) and lower right(uy, ; vir ). The summation over all pixels in the de ned rectangle igiby
Mir Xir
I (U;v) = Int (Uuisva) + Int (Ui Vi) Int (Uorsvae)  Int (usve) - (3.12)

U=u y V=V y

A graphical representation of equation (3.12) is providedrigure 3.8. The property described in equa-
tion (3.12) allows for very fast calculation of box ltersingply by calculating the sum of the rectangle
speci ed by the lter according to equation (3.12) and mpil§ing it by the weight of the box lIter. This
characteristic was rst exploited by Viola and Jones [49] dbject recognition, using cascades of Haar
wavelets as classi ers. Since then it has been used in offpications, for example the approximation
of the Hessian of Gaussians in scale space in SURF-featsgess(ibsection 3.1.2 SURF). It also be-
comes very useful in the comparison of image patches, asrstmsubsection 3.2.2. It should be noted

that it is sometimes bene cial to also calculate the integmage of squared sumat q.
X X
Int sq (u;v) = I u
ul uvo v

0,02 (3.13)

The integral image of squared sums can be calculated likmtbgral image in a single pass simply by
exchangind (u; V) in equation (3.11) with (u;v)2. Thereforelnt andInt sq are usually calculated
together in one single pass over imdgé required.

3.2.2 Image Patch Comparison

The following subsection is supposed to give a short ovenhiew images or image patches can be
compared ef ciently. In the following the terms image andaige patch will be used interchangeably,
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since it makes no algorithmic difference if whole imagesust parts of them are compared. The purpose
of the comparison is to determine if in two given image pasdhe same scene is depicted. Itis important
to note, that both images need to have the same wizith( height) and the discussed techniques are
applicable to gray-scale or any other single channel images

For this purpose a comparison functiér(l; | 9 is needed which gets two images as input and should
indicate if these images are similar or not. The perhaps wlpgbus idea to solve this task is to just
calculate the sum of distances between single pixels in éslagnd| &

X X
Caist 1310 = I (u;v)  19%u;v) (3.14)

u \'%

While (3.14) would correctly determine a distanceOdbr two identical images it would fail in many
other cases (a gray image would be considered similar to ageémnshowing white and black in equal
parts). Using the absolute distances instead of the stibtmagould correct this problem. However it is
usually desired to weight one great difference strongen thany small differences, since this reduces
the in uence of random noise. Therefore t88Dis often considered a good measure of comparison

X X
Cesg 1310 = I (u:v) 1%u;v) 2 (3.15)

u \

Still (3.15) will have problems with images under differdhtmination. 1f1%u;v) = | (u;v) + k where
8u;v: 0 u<width,0 v < height, k 2 Z holds, then both images show exactly the same image
under different lighting conditions, b@ssy will indicate a difference betwednandl © Another problem
might be that the codomain @fssq is dependent on the size of the compared images. This ishit@tuse
of xed thresholds to evaluate results different from petfimatchesCssg = 0). To address the problems
of the aforementioned comparison functions tieemalized cross-correlatioabbreviatedNCCin the
following) is a suitable function. It is de ned as
X X . Oy, - 0
Cree 1510 = % I (u;v) 1 1°%uv) (3.16)

I 10

u Vv

wherel and|?are the mean values of imageand | ° respectivelyn = width height denotes the
number of pixels in the image patches andand o are the standard deviation of imagesnd| °
Contrary to the (absolute) distance of tA8Dsmall results for théNCCdo not indicate good matches.
The range of values for thdCCis de ned asCncc(l;1 9 7! [ 1;1] where 1 indicates a perfect match
and 1would correspond to a perfect mismatch (i.e. the image ispewad to its inverted image). The
use of the standard deviation provides for robustness sigetianging illumination.

Obviously the normalized cross correlation is more costlgampute than (3.14) or (3.15). Naive
implementation will not be fast enough to estimate a goodespondence in the available time window.
Consider the scenario that a given image patdh compared to a region of identical size in imdge
The objective is to nd the position where patch and imageaespond best and if the score of tREC
is above a given threshold it may be assumed that the patdapistdd in this part of the image. Like
kernels, patches in this scenario are typically of odd wattd height (but not necessarily squared), so
that there is one center pixel which determines the postfdhe patch in the image. The image patch's
size is given byp,, pn and the search region in imagés denoted bys, . S; can take various shapes,
most common are rectangles or circles around a given imagelioate(u;v), but also a set of listed
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image coordinates would work. Since paghill not change it is assumed, that standard deviatign
and mearp are previously determined, the part of the image comparédmaround image coordinate
(u;v) is denoted ap; (u;V), its mean and standard deviationgasand |, . To simplify the expressions
it is furthermore assumed that the image coordinatgsandp, are the same, i.e. in both the upper left
corner refers tq0; 0) and the lower right tdp, 1;pn  1). The naive implementation MCCmight
look like Algorithm 3.1. Note that the operations in linesr&lat of Algorithm 3.1 are also loops, going

Algorithm 3.1: Naive Implementation oNCC

Please note that functiogetMean() andgetStdDev() include loops over all pixel i, .
input :image patctp, imagel and a search regidh
output: correlation scordest_score and corresponding positidmest_pos

1 best_score 1

2 bestpos ( 1; 1)

3 patch_size pw pn

4 forall (i,j)inS; do

5 P getPatch( i;j)

6 pi getMean( p)) //'loop over all pixels irp, required
7 DI getStdDev( p;) /' loop over all pixels i, required
8 sum O

9 forall (u,v)inp, do

10 sum  sum+(p(u;v) p) (Pi(u;v)  pr)

11 end

12 sum sum=(patchsize , )
13 if sum > best_score then

14 best_score  sum
15 best pos (i;))
16 end

17 end

over all elements g .

There exist however several methods to speed up the cédeulalt equation (3.16). Consider the
de nition of the standard deviation of an image pafebf sizen = p,  pn with its upper left corner at
position(up; Vp) in imagel :

v
u 1pg 1
1K
o=t = (Puv) P
u=0 v=0
\lj )
{J lpx 1pg 1 l[y( Ipg 1
=" = (Utupv+vy) — I (U+upv+Vvy) (3.17)
u=0 v=0 n u=0 v=0

P P
This expression can be simpli ed, if a closer look is taken t§¥, ! o ! (p(u;v) p)2 This can be
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rewritten as

P 1p( 1 P 1p 1
(p(u;v) p?= p(u;v)?  2p(u;v) p+ p?
u=0 v=0 u=0 v=0
P 1p 1 , P 1px 1 ,
= p(u;v) 2p (p(u;v))+ np
u=0 v=0 u=0 v=0
P 1p 1
= p(u;v)>  2pnp+ np?
u=0 v=0
P 1p 1
= pu;v)>  np? (3.18)
u=0 v=0

Combining equations (3.18) and (3.17) results in

pu;v)®  p? (3.19)

Y

1py 1
_ P _} P P
T h

u=0 v=0

If the integral imagdnt (see equation Q.lO)) gnd the integral image of squared Bumg,; (equation
(3.13)) are calculated beforehamd,and  P*o ' Pt p(u;v)? can be calculated very ef ciently as:

_Int (up;vp)+ Int (Up+pw Livp+pn 1)

n
Int (Up;vp+ pn 1)+ Int (Up+ pw  1Vp)
n
and
P 1o 1
P(U;V)2 = Int sq (Up;Vp) + INt sq (Up+ Pw  Lvp+pn 1)
u=0 v=0

INt sq (Up;Vp+ Pn 1) It sqUp+ pw  1;Vp)

Since the computation #fit andint sq are inO (n) (n being the number of pixels) their computations
pays of quickly especially if several image patches neectodmpared in large search areas. However
optimization can be taken another step further. First cmmsihe numerator of equation (3.16) for the
case of comparing a patghwith a region of image of equal size and upper left cornry; vp). Letp

be the mean value of the de ned regionlin With a similar approach as for the standard deviation the
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numerator of equation (3.16) can be written as

I 1
(p(u;v) p(I (Utupv+vy) pr)
u=0 v=0
P 1 1
= pu;v) I (utupv+vp) pu;v)pr pl(u+tupv+vp)+ pp
u=0 v=0
P 1pg 1
= (p(u;v) I (U+upv+vp))  2npp + npp
u=0 v=0
P I 1
= (Pu;v) 1T (U+upv+vp)  npp (3.20)
u=0 v=0

Though the rst part of the numerator with the double sum lodset computed in a loop, the second part
can be obtained by the integral image (see above). Emplddtigequations (3.19) and (3.20) results in
Algorithm 3.2.

Algorithm 3.2: Ef cient implementation oNCC

This algorithm combines the simpli cations stated in (3.48d (3.20).
input : image patclp, imagel , search regio; Int andint sq of |
output: correlation scoréest_score and corresponding positidrest_pos

1 best_score 1

2 bestpos ( 1; 1)

3 patch_size pw pn

4 forall (i,j)inS; do

5 pi getPatch( i)

6 isum getPatchSum( Int,i, |, pw, Pn)

7 i.sum2  getSquaredPatchSum(  Intsg, i,j, Pw, Pn)
8 sum_ppl O

9 forall (u,v) inpdo

10 sum_ppl sum_ppl+ p(u;v) p (u;v)

11 end

12 numerator sum_ppl isum p

13 denom (i.sum2 isum isum =patchsize) 2
14 score  numerator =sqrt( denom)

15 if score > best_score then

16 best_score  score
17 best pos (i,j)
18 end

19 end

The OPENCYV function cvMatchTemplate() uses some additional low-level optimizations to
Algorithm 3.2, but the basic principle is the same. Of couts overhead computation needed for
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L Algorithm
Speci cations

3.1 3.2 cvMatchTemplate()
Patch Size Search Regionmspatch Mspatch % of 3.1  M3patch % of 3.1
5 5 3 3 0.0433 0.0400 92 0.0457 105
5 5 5 5 0.1100 0.0766 70 0.0465 42
5 5 10 10 0.4239 0.2528 60 0.1067 25
77 3 3 0.0763 0.0400 52 0.0530 69
7 7 5 5 0.1947 0.0877 45 0.0503 26
7 7 10 10 0.7460 0.2778 37 0.1156 16
11 11 3 3 0.1643 0.0498 30 0.0492 30
11 11 5 5 0.4372 0.1015 23 0.0724 17

11 11 10 10 1.7474 0.3513 20 0.1151 7
21 21 3 3 0.5598 0.0925 17 0.1082 19

21 21 5 5 1.5366 0.2064 13 0.1100 7

21 21 10 10 6.0853 0.6708 11 0.2804 5

Table 3.1: Speed comparison fddCCcomputation. All run-times were determined experimensathe average

of 153000 runs on a Intel Core2Duo 2.26 GHz processor (noitiuttading used here). Still it is doubtful, how
reliable the measured run-times are, therefore run-timegméage compared to Algorithm 3.1 is rounded to integer
values and should more be seen as a general indicator, théfeloa

the integral image and the integral image of squared sums gfiymore the larger search area and
image patch become. In Table 3.1 a run-time comparison oéltparithms is depicted. Please note
that patches of sizél 1l1and21 21 give stable results, smaller patch sizes may decreasectorre
matching. Search regions up 1@ 10 pixels or even larger might temporary be needed isUAL
MoNoO-SLAM. Usually around 10 image patches need to be matchedédrframe. If not all necessary
operations can be completed this can lead to a vicious cstlee missed frames induce larger search
areas in the subsequent frame.
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Chapter 4

VISUAL MONO-SLAM

After all the basics have been discussed in chapter 2 and hiaipter will explain how the discussed
concepts and algorithms work together isAL MONO-SLAM.

In the rst section 4.1 the general concept of the Extendebiga Filter is introduced from a theo-
retic standpoint. Afterwards it will be shown how an EKF canused to model 3D positions of distinct
feature points and the pose and velocities of the obsenangeca. Therefore in section 4.2 the state
representation will be de ned, while section 4.3 presehtsttansition function along its Jacobian. The
function to obtain the measurement prediction and its Jaoddre discussed in section 4.4, followed by
section 4.5 devoted to incorporate the actual measurergainted by feature matching. The description
of the EKF algorithm for the VsuAL MONO-SLAM application is concluded by section 4.6 which
contains the update step along all related operations. dhainder of this chapter covers various issues
concerning the two different 3D point representationsouhticed in section 4.2. First section 4.7 pro-
vides a mathematical analysis of the linearity of the degtim®tion of both 3D point representations,
followed by section 4.8 which discusses how additional et can be incorporated in the existing
EKF. Afterwards in section 4.9 conversion from one pointresgntation to the other is presented and
the chapter is closed by a brief explanation on the deletidaatures in the EKF.

This chapter is supposed to fully illustrate the workingaEKF at a very detailed level, since many
descriptions of EKFs in the literature are either on a vepeswial level where most of the details are
omitted or the EKF is discussed in a mathematical contexiowit any application background. Thus
the reader not familiar with the EKF in the rst place mighhsetimes get the impression that its a priori
state estimation and its correction happen by “magic”. Hdpethis chapter will show that no “magic”
but plain (and sometimes tedious) mathematics can be usdd &l the work. Before the technical
details will be explained in their appropriate sectionsrirein idea of V'suAL MoNoO-SLAM will be
presented rst.

VISUAL MONO-SLAM will create a consistent 3 dimensional map of the emwinent by movement
of a single low-cost camera. The environment will be represak by single 3D points. As explained in
section 2.4 depth information can only be gathered if theespaint is observed from at least two known
poses. Therefore the pose of the camera needs to be estiamtedll. The estimation is done via
an EKF, assuming a static environment. Therefore changd®ineceived images are contributed to
camera movement. Dependent on the amount of movement addpkie of a point its parallax will start
to differ. Repeated observation of the same points and congpthe location of their projections with
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the expected locations re nes both camera pose estimatidpaint location estimation. The underlying
method is triangulation, of course, but the whole triantiofaprocess is implicitly handled by the EKF
and does not need to be modeled explicitly. Another nicegngmf the EKF is that different points in
the EKF will become connected via the covariance matrix.sTheans that the location estimation of
points that were not observed during one frame may still hgdved by the observation of other points.
How this main idea is implemented will be shown in the follogi

4.1 Extended Kalman Filter

This chapter will provide a short introduction to tBgtended Kalman Filte(EKF) which is used as the
underlying mechanism to estimate pose and feature posiitiodSUAL MONO-SLAM.

The EKF is an extension of the Kalman Filter to model nondingystems. Since the Kalman Filter
and EKF are quite similar in respect to the underlying themmly the EKF will be discussed further.
Please note that only a very brief and incomplete (in termprobfs etc.) introduction to the EKF
is given in this chapter. Extensive information on the topidalman Filters and other probabilistic
methods, including proofs, computational complexity gsigl and application examples can be found
in [47] which is highly recommended for more details.

The Kalman Filteris a well known and widely used recursi@aussian lterto estimate the state
of continuous linear systems under uncertainty. That metiiad the state vectox; of a system is
modeled by a multivariate Gaussian distribution with meamnd covariance ¢, at timet. What the
state denotes is dependent on the application, of courdéasisaL MoNO-SLAM for example the state
will encode the 3D position of the camera in the world cooatinsystem, its orientation and velocities
and the estimated positions of all observed features. Téiemsywill be observed at discrete points in
time, where the current time is always referred td ashile the previous time steps are 1,t 2
etc. The system can be in uenced in each time step by a setiiohaadenoted ag;. Furthermore it is
assumed that some sort of sensor with measurement furictaists which can be used to gain (noisy)
measurement® about the system at tinte Each time step is structured in two phases: First comes the
so calledprediction stepand afterwards thapdate step The basic idea of the prediction is to estimate
into which state the system should be transferred to froimagtd stat€ ; 1; ; 1) if actionsa; are
executed. This is done by transition functigfa;; ; 1). Once the next state ¢; ) is predicted, a
measurement prediction has to be made. In order to do thisagumement model with a functitr( ;)
is needed, wherl ( ) returns the measurements which are expected, if the systardwn fact be
in state( ¢; ). After the execution a measurementis taken and the actual state of the system is
compared with the predicted state. Both prediction and oreasent in uence the new estimated state
( ¢; t). Algorithm 4.1 shows the the previous description in a mam@gact way. Note that while the
measurements; and the actions; can be directly observed, the rest of the system, especiatgx;
can not be observed directly, but is estimated through sensasurements and actions. If the true state
could be observed there would be no need for an estimatiothasén EKF. This distinction is depicted
in Figure 4.1.

In the remainder a closer look is taken to Algorithm 4.1 topamdy explain the meaning of all
involved terms. As stated above, the Kalman Filter can oelyded for linear systems, which is a rather
severe limitation, since many “interesting” systems do lmettave linearly. Since only linear systems
are considered in the Kalman Filter the prediction of the mea(Algorithm 4.1, line 1) is done by
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Figure 4.1: Schematic EKF Sequence.

Legend:g — transition functionh — measurement functio®, — transition noiseQ) — sensor noise — actionst —

time andx — state. Arrows indicate in uences. Keep in mind tlxatienotes the real state and not its estimation.
Therefore there is no arrow from the measurenzdotstatex, since the measurement should not change the actual
state of the system (while it is likely to change the estioratf the state).

Algorithm 4.1: Extended Kalman Filter

input : prev. mean ; 1, prev. covariance ; i, actionsa;, measurementg
output: mean ¢, covariance
t=0(a; t 1)
t= Gt  1G{ + Ry
Ki= (H{ Hi (H{ + Q
t= t+Ki(z h(y)
t=( KiHy) ¢ /I is identity matrix

1

a A W N P

multiplying the actionsa; with an appropriate matrix, encoding the state transitidime EKF uses
linearization of to enable estimation of systems, featuring non-linedrai®r. In a non-linear system
the state transition cannot be expressed by a matrix (sirecsyistem would be linear otherwise), but is
expressed by some functign To linearizeg rst order Taylor expansion is used, which creates a linear
approximation ofy, dependent on the properties of the rst order derivateSince Taylor expansion
approximates a function from a single point and the valudefderivatives at that point, for a Gaussian
functions it is reasonable to use the point of the largestilibod as that point. This is given by the last
mean ; 1. The linearization fog is therefore given by

g(asxt 1) g@; ¢ D+ d%@; « DXt 1t 1)
=g(a; ¢ 1)+ Gi(Xt 1t 1) 4.1)

wherex; denotes the actual state at timme 1 andG; the Jacobianof g(a;; ¢ 1). The Jacobiar;
plays an important part in the estimation of the covariames (Algorithm 4.1, line 2). To model noise
in the transition function a Gaussian random variable wittan® and covarianc®; is incorporated in
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the state prediction. This is re ected in the additive teRnin line 2 of Algorithm 4.1 while line 1 is
not in uenced, since the mean of the noisdisThe same linearization method usedgis applied to
measurement functiolm, resulting in its Jacobiahl; (Algorithm 4.1, line 3). In the same line matrik;

is calculated, which is referred to Eslman gainin the literature. The Kalman gain can be interpreted
as a weight how strongly the actual measurenzeotin in uence the predicted mean, resulting in ¢
(see line 4). Finally the Kalman gain and the Jacobian of teasurement function are used to update
the estimation of the covariance (line 5).

Please note that the EKF after the linearizationgfandh according to equation (4.1) basically cor-
responds to the well-studied Kalman Filter. Due to this &amt its simplicity and ef ciency compared to
other methods to estimate non-linear systems the EKF ismtlyrone of the most popular approaches in
this eld. The computational most expensive part of the EKFhie matrix inversion in line 3. According
to [47] the EKF isinO k%% + n , wherek is the dimension of measurement veapandn denotes the
dimension of state&;. Compared to other approaches like particle lters, whiah be exponential in
this is quite fast. Still for high frequency applicationkdiViSuAL MoONO-SLAM the matrix inversion
limits the feasible size of the state veciqr What this means in practice will be discussed in chapter 4
alongside the practical implementation of an EKF as the 0bkéiIsuAL MONO-SLAM.

4.2 State Representation

As stated in section 4.1 the state vectgiis not directly observable but can only indirectly be estada
by prediction, sensor measurements and subsequent figioediction and measurement. All informa-
tion important for the system needs to be encoded in the sthteh implies for M\suAL MoNO-SLAM
that the current position and orientation of the camera nede included in the state vector as well as
the estimated positions of all present features in the magpractice that means that is composed
of two parts. The rst will represent the camera state and gart will not vary in its dimension. The
second part ok; will contain the features and their estimated positiongstmaking up the map. This
part will vary in dimension, since the map is initially emgtgid will grow (and eventually shrink) over
time.

Before the different parts contributing to the state veararconsidered rst some short notes on the
notation used in the following are given: In the followingawoordinate systems will be considered,
namely the world coordinate systéii and the camera coordinate syst€m These coordinate system
may be denoted as superscripts in the remainder to indiekti@/e to which coordinate system a variable
is de ned (for exampld ©). To better distinguish vectors from scalars vectors véligsinted bold and
in non-italics (sax denotes a vector whike would denote a scalar).

It should be noted that MuAL MONO-SLAM as presented in the following assumes a right-hand
coordinate system, for both world coordinates and camevedamates. This is later illustrated among
other things in Figure 4.3.
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4.2.1 Camera Representation

Information concerning the camera is encoded in a 13 dimeakiectorx,, which embodies the rst
entries in the complete state vectqr Vectorx,, has the following appearance:
0 1

WC
X, = %}q\/w g (4.2)

|1 C

whererWC = (xc¢ yc zc)T denotes the 3D position of the camera optical center in thedwmor-
dinate systemgW ¢ the unitquaternionspecifying the camera orientation relative to the worldrfea
vW encodes the linear velocities of the camera along the coateliaxes oV and! © the angular ve-
locities relative to the camera coordinate sys€mThus the camera state will be represented by a 13
dimensional vector. Initially the camera will be positionia the origin of the world coordinate system
(rtWC = (0 0 0)"), looking into the direction of the positiv&y -axis VS = (1 0 0 0)") and the
camera is assumed to be unmovind’(= 1 € =(0 0 O)T).

Thel3 13covariance matri® is initialized as

0 1

0 1 100 O O O

0 0 0 010 0 0 O
p-g: o V= 001 O 0 0
00 0O 00O QG5 0 O

0 0OV 00 O 05 O
000 0O 0 O5

If the reader should be unfamiliar with quaternions and hogytcan be used to represent rotations
and their advantages compared to other rotation notat®n$3] provides useful information on this
topic.

4.2.2 XYZ Feature Representation

The parametrization of a 3 dimensional featurén the EKF seems straightforward by simply denoting
Xj as

T
Xi= Xi Vi z (4-3)

referred to as XYZ encoding. As discussed in section 2.4 casrere not able to measure depth imme-
diately, but can only calculate depth by triangulation fimeg correspondences and two or more known
camera positions. At the rst observation of a newly inizald feature no information about its depth
can be deduced. While the EKF is able to cope with non-lineausition and measurement functions by
linearization, its state estimation estimation modeleGasssiar{ ; ) hasto be linear. Unfortunately
if a feature is not initialized with its guessed depth clasdtd real depth (which is quite unlikely) the
depth estimation will not behave linear and thus cannot beectty modeled in an EKF.
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Figure 4.2: Azimuth and elevation in camera coordinate system. The camgtical center is denoted &
coordinate axes are label¥d, Y. andZ.. For the observed featuyge, marked by &1, azimuth ; and elevation
i are depicted. The azimuth is shaded in blue, while the etavat shaded red.

4.2.3 Inverse Depth Feature Representation

To address the problems caused by initialization of featimeXYZ encoding the authors of [13, 16, 20]
propose ainverse deptlencoding of features. Since the inverse depth is linearritrast to depth this is
a feasible approach. A featuye in inverse depth encoding is comprised by the following 6etisional
vector:

Yi= Xci Yei Zeio i i i (4.4)

whereXc:i, Yci, Zc;i Specify the 3D position of the camera's optical center at teeobservation of
featurey;. ; and ; areazimuthandelevation(see Figure 4.2) of the feature in reference to the camera
coordinate system and is the inverse depth of;.

The 3D point modeled by (4.4) is given by

0O 1 ©O 1
Xi Xcii 1
Xi = @y = @y K + —m (i 1) (4.5)
|
Zj Zc;i
T
m( i; )= sin ;cos ; sin | COS | COS (4.6)

Functionm ( j; ;) in equation (4.6) yields a unit vector pointing from the caa'seoptical center
to featurey;. Multiplying this vector with the deptid; = il and adding it to the position of the rst

observationXc:i Ye:i zc;i)T results in the concurrent 3D position (equation (4.5)).

Both XYZ encoded features and inverse depth features d¢amfgisore than just the description of a
3 dimensional point by equations (4.3) and (4.4) respdgtite addition some comparison mechanism
is needed. Whether this is done by comparison of an imagé pascpresented in subsection 3.2.2 or
by comparison of high level descriptors (see subsectior2 Bdepends on the actual implementation and
has no in uence on the underlying mathematical modulatibthe EKF.
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The full state vectok for a map composed of features is therefore composed of

N
xe= xy 7 f] oo f @4.7)

wheref; 2 f X;;y;g denotes a feature either in XYZ or inverse depth encoding.

4.3 State Transition

The state transition functiog, for the camera in YSuAL MONO-SLAM is quite simple. As stated
in equation (4.2) the camera is de ned by the 3D position sfadptical centerW < its orientation as

a quaterniorgW ¢ and linear and angular velocities¥ and! €. In section 4.1 the transition function
g(ut; ¢ 1) was dependent on the current actiapsand the previous mean 1. In the case of a free
moving camera no observable explicit commands are givess, ttie transition function in this case will
solely depend on; ; and is de ned as

0 1 0 1
e SV,
qWC qWC quat ] C t
gv(tl)zé)twgzgtl w 1 (4.8)
Vi Vi
I C |1 C

where tis de ned as the difference ¢fandt landquat ! £, t isthe quaternion corresponding to
the rotation of £ ; t. To compute the quaternion from the given angular velcziied time difference
t two operations are necessary. First the the angleaxsha; i representation of the rotation is

A
calculated. For given angular velocity® = 15 X 'S and t the equivalent angle-axis
representation is given by

le
a= |_r%>ay r%k,c E K C i (4.9)

let

wherel! tc ;21 X;Y; Zgrefers to the angular velocity around the indicated coa@tdimaxis. The result
of (4.9) is then transferred to the quaternigpdenoting the same rotation:

T

q= C0Sy &siny 2siny 2 sin, (4.10)
Since no information about any actions like acceleratidri;ear or angular velocity are available both
velocity vectors are predicted to be the same jras in { 1. If during measurement contradicting
information concerning this assumption is gathered, thisb& incorporated in the update step. As all
features in the map are assumed to be static their estirsai@not changed by the transition function.
This leads to the following complete transition function:
!

9( ¢ 1) = gV(Ot 1) (4.11)
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where0 denotes the 0 vector amtim (0) = ngim  13if dim( ¢ 1) = Ngim-

Please note that for similar applications ofSYAL MONO-SLAM it might be possible to directly
observe issued commands. If for example a single camera isitexb on top of a robot, its steering
commands would de nitely have an impact on the appearantieeafansition function.

With the complete transition functiog( ; 1) de ned in equation (4.11) for the MUAL MONO-
SLAM scenario its Jacobia@; should be considered, to complete the prediction step dEiE (lines
1 and 2 in algorithm 4.1). According to (4.11) formadimensional mean vector; ; and belonging
Ngim Ngdim COvariance ; ; JacobiarG; is of the following form

!
FF O .
G = ot o P dm(F)=13 13 dim(G) = Ngm  Naim (4.12)

In the remainder of 4.3 the appearancé-pfvill be examined more closely. Matrix; is the Jacobian of
ov( t 1), de ned in equation (4.8). Judging from (4.8) the structafé; is

avs | ef,
0 Ghe 0 &b
F= B e (4.13)
ovL
0 0 0 @Q}\,l

where0 is already inserted in place of the Jacobians submatricesento in uence is present. Of the
remaining 6 non-zero Jacobians 4 can be dealt with easityelyait holds

0 1
1 0
tWC_@tW_@'thgw &
0 1

WC — w W
@'y @y, @,

o +— O

and

O1001
wWC
tht&log
tl 001

which follows immediately from (4.8). To distinguish theat@nd the three imaginary parts a quaternion
g will be denotes ag| = (Or O O qt;k)T. The quaterniora refers to the quaternion representing
the rotation given by £ ; and t, thusa; 1 =quat ! L, t . Using these notations the 2 remaining
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. (@WC @WC
Jacobians= &= and =*— are de ned as
@, @y,
0 1
at 1r a1 at 1] ar 1k
YVC _Ba 1i &t 1r ar 1k at 1]
We - (4.14)
t 1 At 1 a 1.,k At 1y a1
a 1k At o1 a 1 St 1
C
we we @uat !~ t
c C C
@a 1r @a 1r @a 1
0 1 @Itc 1;X t @Itc 1Y t @Itc 1,2 t
G wr G i G 1 G 1k @a 1 @a 1 @a 1
_ q l;i q[ Lr q 1k q[ 1;j @Itc X t @Ilc LY t @Itc 1z t (4 15)
q: 1;j q[ 1k q: 1r q[ 1: @a 1; @a 1; @a 1; )
| ’ Y ’ @F 1x U @F ;y t @F  ; t
G 1k G 15 G i G 1r
@a 1k @a 1k @a 1:k

C C C
@!t 1;X t @!t 1Y t @!t 1;Z t

C
To solve% a closer look at the partial derivatives in the right-handriran (4.15) is needed.
T o1

First consider the partial derivatives of the real part efdgfuaternion. These are calculated by

@al;r _t !tcl; _t
@F .. 2 KEik2'

The partial derivatives in the remainityy 3 submatrix of the right-hand matrix in (4.15) can be dis-
tinguished in two cases: Those were the imaginary part ofegui@n a is derived by its corresponding
angular velocity (found on the main diagonal of e 3 submatrix) and the other partial derivatives.
The main diagonal partial derivatives are
!
@a 1; c ? t 1 e ?

t o t 1,
— = _=cos kIS k— ————+sin kI & k— 1 ' 4.17
@C, t tIT2 KkEk 2 t1T2 KC ok ki & k2 (4-17)

C

= sin k! 4k 21X;Y;Zg (4.16)

and(; ) 2f(i;X);(;Y);(k;Z)g The partial derivatives still left are of the form
1
. 1c 18, )
@ay _lcnrn o k€ .k

@F,. t  KkENK
with (55 ) 2 F@EY;X)HZX ) GXY ) (:ZY )ik X;Z2);(k;Y;Z2)g. Though the partial
derivatives (4.16), (4.17) and (4.18) may seem complicatecst glance they can be obtained by simple
but somewhat tedious application of the common rules of/dton on functionquat(! £ q t),dened
by equations (4.9) and (4.10).

In order to calculate the prediction of the covariangethere is still one piece missing, namely the
additional noiseR; (see algorithm 4.1, line 2R; has an appearance similar@g:
!
RY 0 _ :
R = 0 0 ; dim Ry =13 13 dim(Rt) = Ngim  Ndim (4.19)

t ot 1 c .t
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where matrixR? is de ned as

0 @Wwe 1 O 1T
t 0
@l @le
anMc
0 T 0 @' 0 @c
Ri= Ft Vmaxt Ft = w eV omaxit aw (t) ! (4.20)

@, " @, "

@' @
0 0 ar;

with

WhereF; is the1l3 6 submatrix, formed by column8 — 13 of matrix F; (see equation (4.13)). If
the maximal linear velocity is denoted by, and maximal angular velocity as5,,, matrix V max:t is

de ned as
I

Vmax: 0
V max;t = et (4.21)

0 max;t

whereVmax:t and max:t in turn are speci ed by

0 1 0 1
1 0O 1 0O
2 2
Vmax;t = V\r%vax E@O 1 Og max;t = ! r%ax t E@O 1 Og
0 01 0 01

Having completed the prediction of and ; next the measurement function needs to be considered.

4.4 Measurement Function

In this subsection the measurement functiornd its Jacobiand; will be presented. Both play an
integral part in the EKF and therefore in30AL MONO-SLAM, since theH; in uences the Kalman
gainK; and the difference of the actual measurementnd the measurement predictibf ) is used
to eventually correct the predicted pose according to vedesensor data.

According to the pinhole camera model (see chapter 2) amaxb@oint on the image sensor de nes
adirectional vecton®© = (hy hy hz)T in the camera coordinate systé&n For better readability the the
subscripts denoting timewill be omitted for the time being. For a point in XYZ encodirgdirectional
vectorh® is speci ed by

00 1 1

Xj
hf = h%yz; = R®Y %)%yig rwcg (4.22)

whererWC denotes the position of the camera optical center in thedaaobrdinate system ar@€W
is the rotational matrix to transform vect®; r"W¢) into the camera coordinate systeR*W can
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be obtained by the inverse of quaternigff © which denotes orientation of the camera with respect to
the world coordinate system. How a unit quaterneps (o G g k) can be converted by function
g2r (q) into a rotation matriXR denoting the same rotation is shown in the following equmatio
° F+q@ ¢ o 20%+2GG  20G +20G0k "
R=g21(0)= ® 2Ga+264G ¢ G+ ? & 200G +2qa K (4.23)
21 +2G 204G +2Ga ¢ ¢ G+

Please note that in the special case of unit quaternionseeseq * of a quaterniory is the same
as the conjugatq of the quaternion. Furthermore it makes no difference inrésalting matrix if rst
the the quaternion)VC is conjugated an®R“"W is constructed ag2r qW¢ orif g™ C is converted
by g2r gW¢ to RWC rst and RWC is subsequently inverted to obtaRfY . However in terms of
computational ef ciency rst calculating the conjugatgV© is preferable, since this can be done by
switching the sign of three double values which is less gabhtin matrix inversion.

The directional vector for a point; in inverse depth encoding is given using equation (4.5) ipQ¢

0O 00 1 1 1
Xc;i
he=hS =RV @Byl rVCK+m( i )X (4.24)
Zc;
wherem ( ;; i) is de ned in equation (4.6). It is noteworthy that even foiirgs at in nity ( ; = 0)

equation (4.24) can be evaluated without problems. In scehserved by a camera points which show
no parallax despite movements of the camera are considelet in nity or close to in nity. For these
kind of points where; 0 holds it follows by equation (4.24) tha® RSWm( ;; ;). That means
while points at or close to in nity will not contribute to thestimation of the camera positiotf',
they still can provide valuable information on the camemientationgV© and the directional vector
m( i; i) of the associated poiryt; in inverse depth coding. A scene with different point enogdis
depicted in Figure 4.3.

Furthermore it should be mentioned that for a given pgijrit inverse depth and a XYZ-coded point
X; obtained by evaluating; according to equation (4.5) general1§YZ ; 8 hCJ will hold. This can be
explained by the different length$. , ; and hCJ will have in the general case. However both vectors
will specify the same direction (i.&0¢=kh®k = h$,,=kh%,,K).

Of courseh© is neither for points in XYZ encoding nor for points in inverdepth directly observed,
but only the points projection on the image sensor. For angpantf;; f 2 f x;yg and its associated
directional vectoh® the undistorted image coordinat@s,:;; vu;i)T expected projection to be measured
is given by

| |
: f hx;i ’

Uy u TR
ho(f)= % = ° @ hai (4.25)
Vu;i Vo am

where(ug; Vo) denotes the principal poind, dy is the physical size of a pixel arfdthe focal length
of the camera.

To resemble the actual coordinates obtained by the cametanthstorted image coordingie,;; ; Vu:i )T
needs to be distorted to be comparable to the actually ed@ivage. The distortion of image coordinate
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Figure 4.3: VisuaAL MoONO-SLAM coordinate system and feature parametrization. Triggroof the right-hand
world coordinate system is indicated B . Three camera positions at timks2 and3 are depicted with optical
centersC; — C3. The corresponding translation¥’© are depicted in cyan. Different orientatiog$’® are
indicated by the wire frames symbolizing the camera casatiPo = ( X;; Vi; z; )T is rst observed from camera
positionC;. Directional vectom ( j; ;) is shown in red and along with the depthof P;. Between camera
positionC; andC, little parallax occurred (angle; is small), thusP; is in inverse depth coding and described
by (Xc:i ; Ye:i ;zc;i)T + lim( iv 1), where(Xci; Yei ;zc;i)T denotes the position ;. Directional vectorhﬁ
(see equation (4.24)) is depicted in green. For larger jaarél , and positionC3) coding is switched to XYZ.
Directional vectoh$,, ; (see (4.22)) is depicted in blue.

(uu;i;vu;i)T can be done according to the distortion functin(h,, (fi)) (see equation (2.17)), gaining
distorted image coordinatég:;; vd;i)T.

With the steps described above for each point in the statewye¢hether in XYZ encoding or inverse
depth, an expected measurement can be computed. Theseeneaists need to be checked if they are
expected to be inside the next image (De. ug; < width and0 vg; < height have to be ful lled).
All expected measurements inside the image compdse) of algorithm 4.1, line 4.

Next the Jacobiatd; of h( ;) needs to be considered. In the remainder of this subsedimn t
construction of a matri>Ht°wiII be discussed, that is closely relatedHg. In fact H; will sometimes
be identical withH 2 while sometimesH; will consist of H? missing some rows. How, is actually
constructed fromH 2 will be shown in section 4.5. The dimension lgf’ depends on the number of
measurements expected to be inside thlg next image. If theethef all points inx; is denoted as
Fi = fft;]_;ft;z; R ;ft;ngWith Ngim = 13 + fii dim (ft;i ), ft;i 2FiandletM; F y; jM tj = Mdim
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be the subset containing &} 2 F which are expected to be on the image sensor, then the diomensi
of HtOWi" be 2mgm  Ngim. With the given notations Jacobidrnowill have the following structure

0 @1igt 1) 1
@
@lfgy; 2) R
HO= @ : dim Ofg) _ 2 Ngim; Ot 2M ¢ (4.26)
: @
@ gtm giny )
t
where@mg” ) = @mf“ is de ned as
|
. @Ifyi @fffti ) '
@Hfi) _ @fv P{z $ G 5 Pz ? (4.27)
@ i dim (fu) wien dim (f1)
where
. @Hfy) . @HRf) :
dm ——= =2 13 dm ——= =2 dim(fg
@t;v @t;i ( t,|)
In the following @@fﬂ(i" nd @mf" will be analyzed. To simplify notation the subscripwill be omitted

again, but keep in rttlnd that the values will neverthelessdpeddent om.

First a closer look aL is taken. This matrix can be interpreted how the cameras{ateuences
the outcome of the measurement functioff;) for a given poinff; in XYZ or inverse depth encoding.
Sincedim (xy) = 13, the Jacobian dfi (f;) with respect to camera statg willbe a2 13 matrix. This
matrix can be partitioned as

@Hf; i i
- gm gm o (4.28)
\"
wheredim % =2 3anddim g*\%ig =2 4.The2 6 zero matrix |n@'° )jUSt shows that
h (f;) is not dependent on velocities’ and! © of camera statg,,. Forg\'?vfc) and g]'\%c) in turn it holds
that
@if) _ @ff) @f 4.29
@WC - @ @WC (4.29)
|
@Kf) _ @Kf) @f
@ = @c @]V\'/C (4.30)
|
S|m|larly @lt ) can be expressed as
. . C
@) _ @ftf) @ 431

@ @° @

Of these Jacobians rst measurement functiofi;) with respect to the direction vectbi© of f; in the
camera coordinate will be examined. For undistorted imagedinates(u;Vvyi)' the measurement
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function is de ned by equation (4.25), but the nal resultthie measurement estimation is distorted by
hqg (uu;i;vu;i)T (see equation (2.17)). Consequently this needs to be amesidn the Jacobian, thus
resulting in

@fifi) _ @fifi) @p(f)
@t @p(fi) @

(4.32)

The rst Jacoblan@m can also be seen & o0 which contains the derivatives of the distorted

image coordlnateéud,.,vd;i) with respect to the undistorted image coordina(tqgi;vu;i)T. The dis-
torted image coordinates however cannot be directly coetpfrom the undistorted coordinates, but
are obtained by Newton-Raphson method (see equations),(Z2.78) and (2.21)). Analogously the
Jacobian is not calculated directly but by inversion of bémo——@2_ which is given by

@ d;i d;l)
0 1
1+ kll’ + kzr + (Ud;i U()) k1+2k2r§
@h  _ B ki+t2ked 2((ugi uo)dy)? 2(vgi Vo)d2
= (4.33)
@ug;i; Vd;i)

(Va:i Vo) Ki+2kor3 1+ kyr2+ kord +
2(ug;  Uo) a2 ki+2kor 2((Vai Vo) dy)?

with rq as de ned in equation (2.18). From equation (4.25) the séckatobia 'f’(g can be directly
@1
calculated as

0 N 1

@bt) _ g TR O an
| — u Hzii u 2|A 434)

@i 0 mhz;i m#

zZl

C
Computation of the remaining Jacoblagr, @WC and % has to take into account whethigr

is in XYZ or inverse depth encoding. The encoding determaieghich equation the Jacobian has to be
calculated. For points in XYZ coding the partial derivativif equation (4.22) have to be calculated while
points in inverse depth require the partial derivativesafagion (4.24). First consider the dependency
of the directional vector in the camera coordinate systénwith respect to the position of the camera's

optical center in the world coordinate system. This is giogn

C .
@é@"vzzc” = ROV (4.35)
for pointsf; in XYZ coding, while for points in inverse depth
@S
@—W"C = RV (4.36)

needs to be computed. How the rotation maRix" can be obtained from quaternigif’ € is shown in
equation (4.23).

Next the Jacobian of the directional vector with respechtrotation of the camemg™V C is con-
sidered. This proves to be a bit more complicated than (4B8)(4.36). The rotatiog"’ < in uences
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h; via rotation matrixR W (see (4.22) and (4.24)). MatriR " in turn is constructed by function
C
g2r g€ . This has to be considered for Jacobﬁ}f resulting in:

@ _ @f @"°
@W¢ - @WC @WC
C
To calculateg'TiC the construction oRW by g2r qWC (see equation (4.23)) and its partial deriva-
tives with respect to real and the three imaginary parts atemiong”’© need to be calculated. This
results in matrix

(4.37)

@IIC _ @42r(q""c)di @|2r(qV"C)di @Zr(qwc)di @|2r(qwc)di (4.38)

@wc -~ @ @ @’ @

whered; denotes the direction vecthy before it is rotated into the camera frame (see (4.22) ard \¥.
Henced; depends on whethéyis in XZY or inverse depth coding and is de ned as:
0 1

Xj
dxyz:i = %)yig rWe (4.39)
Zj

for points encoded in XYZ. For points in inverse depth codings given by
00 1 1

Xc;i
di = i @Bycik YCK+m(i ) (4.40)
Zgii

According to equation (4.23) the partial derivativexy@f "< with respects to the different parts of
quaterniorgV¢ are speci ed as

0
W C W C W C
@z2r "¢ _ %qwc (\:/I:/(C qJWC§
0 qWC qWC qYVCl
WC  WC W C
— ¢ q'c g
7@\/\/(: =2 %qJWC qWC qWC§ (442)
' qQve  gwe WC
0 k I G 1
W C W C W C
@2r qWc g G O
@IWC =2 qWC qWC q(WC § (4_43)
! qve e qWc
0 W C W C WCl
k

qW Cc qW Cc q\kl\/ C
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The missing Jacobiagja—g of the conjugate with respect to the quaternion is luckiliteygimple:

0 1
1.0 0 O
@We 0 1 0 O
== (4.45)
@ 0 1 0
0 0 0 1

Finally the Jacobian of the directional vectdr with respect to the estimation of poifitis needed
to complete the description &f2. For points in XYZ encoding this is is given by
I

@Sz o @%z
CX@Y_Z L= RCW: dim gz" =3 3 (4.46)
| |
while the Jacobian for inverse depth encoded points is dibase
!
@S @c, @, @c, @c, .., @
@, T @x ;y(;;il;zc;i @YiI @YiI @YiI ; dim @ =3 6 (4.47)
with
0 1
c c COS  COS j
7@2;_@?/;?.2 -= RV, —%fi = RCW 0
e e ' sin j CoS |
0 _ 1 00 1 1
sin jsin X
@]C | | @]C C;l
@—'i' =RWE  cos; K @.I = RO By K r1Wek
COS i Sin Zcii

Cil

The different dimensionality o@g@f L and @g is caused by the different dimension of the encoding
(3 dimensions for XYZ and 6 for inverse depth) and is also cteel in the structure 01@g—‘t') (see
equation (4.27)).

Keep in mind that the above computations are necessary &br gaintf.; 2 M ¢ (i.e. all points
that are predicted to be on the image sensor at tim&Vhile some Jacobians on the lower level (like
(4.41) — (4.44), (4.45)) can be calculated once and be refosadl pointsfi; 2 M , most Jacobians are
dependent on properties ihfand need to be computed for each point individually. Furttoee for each
iteration of the EKF the Jacobians, apart from equation5¢.Aeed to be calculated anew, since they
are dependent on tinte

4.5 Feature Matching

Having discussed measurement functiof ;) to gain expected measurements in section 4.4 the actual
matching of features and the constructiotHgffrom H 2will be discussed next. How the actual matching
of features is done depends whether image patches or fedgaogiptors are used to characterize the
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appearance of a feature in an image (see subsections 3L aRd 3.2.2). However in either case the
knowledge inherent in the EKF can be exploited to reduce coatipnal effort. The basic idea is quite
simple and intuitive: From measurement functfof ;) an expected positiof 4. ;v d;i)T for featuref;
is known. Instead of trying to match featurigswith every possible location of the whole image, it is
much more useful to search in an area around image coordinat® d;i)T. Since the covariance in the
EKF encodes information about the uncertainty of a featoggtion, this information should be regarded
and in uence the size of the search area: If the feature's 8Bitjpn (see (4.3) or (4.5)) is well known
(i.e. the uncertainty indicated by for f; is small, the resulting search area should be small as \wal, t
reducing computational load and saving time). Consequédatifeatures where the uncertainty for the
estimated location is high the size of the search regionldhncrease. In case of a successful detection
of featuref; in its speci ¢ search region, the actually measured pasitin;;; vq;i)" in the image will be
part of the measurement (see algorithm 4.1, line 4). If the feature could not be madcim its search
region, it will not contribute to the correction of the postimation (i.e. it will not be part of; and its
estimation will be removed frorh ( ;). Analogously the 2 row% are removed fronH ). Now
that the basic idea has been outlined a closer look at th@mepitlng mathematics is taken:

To get an idea about the uncertainty of the estimated pasitideaturef; in the image and subse-
guently about the size of its search region imeovation covariances; is calculated. The innovation
covariance is de ned as

Sc= HY (HT + QP (4.48)

where  is the predicted covariance (see algorithm 4.1, line 2 amsestion 4.3)H{is calculated
according to equation (4.26) a@f denotes a matrix to modulate sensor noise in pixels. Therdiroas
of the matrices in equation (4.48) are

dim(S)=2mg,, 2mJ,;dim H? =2m3, ngm
dim ¢ = Ngm Ngim; dim Q) =2m§,, 2mf,

wherengim denotes the dimension of the current sbatelndmgim is the number of features predicted
to be on the image sensor at timeApart from QY all terms in (4.48) have been previously discussed,
so a closer look a®? is suf cient to completely determine innovation covariar®;. Noise matrixQY is
given as

QP= j (4.49)

where denotes an identity matrix witdim( ) = 2m$._.  2m§ . and 3 species the squared
standard deviation of image noise (i.er models that a point might be displayed at another than its
ideal position). For many camerag = 1 may be assumed, but there for some cameras other standard
deviations need to be used.

Taking a closer look aB; one might notice that for all pointg; 2 M ; the uncertainties regarding
their image coordinates are found at the main diagonal (dg M ; as in equation (4.26)). Considering
the appearance of the predicted covariangand ofH 2the main diagonal o8; contains the variance in
U andV direction for each featurg; 2 M ;. This can be employed to de ne the boundaribg;; by:i)
of the search region for each featuye2 IM t inU andV directioln as

b 5 P St.(2i L2 1)

(4.50)
by St; (2i; 2i)
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wheres;, (;; y denotes the element at positi@nj ) of matrix S;. Since in an EKF everything is modeled
as Gaussian, 2 times the standard deviation constitute85#tecon dence interval of the around the
estimated mean. By equation (4.50) we get just these comrelé@ntervals. The search region can be
either modeled as an ellipse with the estimated pointsilmTét 4. v d;i)T as its center, radiusg;;j in U
direction and radiu$,; in V direction. Or the more simple approach would be a rectangle wpper
left corner(i g  buivai byi)' and lower right cornet g + bui v gi + byi)'.

If the feature can be matched inside this search region asirappropriate comparison the feature is
considered to be successfully matched. The image cooesifwat;; vg;i)" denoting the position of the
match are appended to measurement vegtand the feature will contribute towards the correction of
the estimates mean and covariance ;. Otherwise the predicted measurementdgowill be removed
from h( ), since no corresponding measuremenkg;ins present and subsequently rois 1 and
2i are deleted from matrid 2 If all featuresg; 2 M  were successfully or unsuccessfully matched
the remains oH 2 coincides with the nal Jacobiahl, of the predicted measuremerit$ ;). Having
completed the calculations discussed in this subsectidrpeaviously in 4.3 and 4.4 the computation of
the Kalman gain and the update step can be addressed next.

Note that the innovation covariance is not needed for thie lig§F algorithm, but is frequently used
in applications of the EKF like EKF-SLAM.

4.6 Update Step

Having done all the tedious preparatory work in sections 4.8 and 4.5 the actual calculation of the
Kalman gainK; and the update can be kept rather simple. First the Kalman(gae algorithm 4.1,
line 3) will be discussed. To recap that line of the algorithma Kalman gain is stated as

Ki= (H He HT+0Q ° (4.51)
with
dim(Kt) = Ngim  2Mgim; dim(H¢) = 2Mgim  Ngim
dm( )= Ngm Ngim; diM(Qt) =2Mgim  2Mgim

wherengim = dim ( X;) denotes the dimension of the current state vectornagg denotes the number
of matched features.

Apart from the noise matriQ; all terms in equation (4.51) were introduced and discugsedavious
chapters. Since matriQ; denotes image noise and is apart from the dimensions idémtith matrix
QY (see (4.49)) no further description @f is needed and thus the Kalman gain is complete.

The two update steps can now be computed straight forwatd@iog to algorithm 4.1, lines 4 and
5. Afterwards the resulting mean and covariance ; need to be tweaked a bit which is not part of the
EKF algorithm. So strictly speaking one could argue that isS0AL MONO-SLAM no pure EKF is
used. The need for a post-processing oénd  arises from the usage of a quaternpf{ to denote
the orientation of the camera. Orientations are only repriesl by unit quaternions and after the update
step it is not guaranteed that the estimated meap'éf still denotes a unit quaternion. Therefar® ©
will be normalized according to

q o q ] q ] q O
g2+ g2+ of+ of Q2+ G2+ o7+ gf Q2+ P+ g+ of Q2+ g2+ o+ of

norm(q) = (4.52)
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The mean with the normalized quaternion will be referredstofa
Consequently the covariance matrix needs to be adopted as well. If the current dimension of the
covariance igim( ¢) = Ngin  Ngim, then the adopted covariance is given by

a
wcC wcC
0= %o 7@02&1 ) o§ %0 7@‘2&1 ) o§ (4.53)
0 0

where the covariance incorporating the normalizatiom ¥ is denoted as ?, a and y label unit
matrices of dimensiondim( z) =3 3anddim( p) = ngm 7 hgim 7 andO indicates zero
matrices of appropriate size.

The Jacoblan@% used in equation (4.53) can be determined from equatio2)4$
O L= Frdrgrd 1Q (4.59)
with
0 1
F+o+ GG GG O Ok
0= GG F+ gt G Gj Ok E
GG 9  F+q+q G Gk
O Gk G} Gk Gk  F+F+q

The modi ed mean ¢ and covariance ? will be used as the old estimation in the next EKF step.

4.7 Feature Linearity

As mentioned in previous sections features in inverse deptbding are linear in their depth estimation
if initialized without prior knowledge, while XYZ encodeddtures are not. This makes the former
encoding suitable for newly initialized features while tater should not be used to represent points of
unknown depth in an EKF. This section will substantiate ¢redtegations with mathematical proof. The
analysis presented here elaborates on the one found in3[12, 1

The approach used by Civera et al. in [12, 13] shows somegasityilto the derivation of the EKF
from the standard Kalman lter (see section 4.1). Civeraletexamine the behaviour of a Gaussian

random variable G ;2 through some functiog. The image of will be a random variable
denoted as . If function gis linear can also be approximated as Gaussian: G ;2 with
=9( )
2_ @9 QQT
@ @

where %f denotes the Jacobian gfwith respect to , evaluated at mean . The interval in which
function g has to be linear in order to allow for this approximation tocherect depends on the size of
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, of course. The larger , the larger the linear interval gfaround mean needs to be. To determine
if Gaussians are properly mapped by functiit is sensible to analyse the behaviourgoi the 95%
con dence region around , given by interval 2 ; +2 1
Linearity of a function may be assumed if the rst order dative of that function is constant. Asin
the linearization of the transition function of the EKF (sggiation (4.1)) rst order Tailor approximation
is used to determine the rst order derivative of functigin

Qg @g , @g

o = &2 (4.55)

where % denotes the second order derivative. To analyze the ligeairifunction g Civera et al.

propose to compare the derivative at the center of the cartdeegion, namely at with the derivative
atthe extrema ( 2 )oftheinterval. The rstis simply given by

@g

4.56
@ (4.56)
while the derivative at the extrema can be expressed as
@9 _ @g
= + =2 2 4.57

according to the approximation in (4.55).
Combining (4.56) and (4.57) a dimensionless linearity inteis proposed in [12, 13]. Linearity

indexL can be used as a measure of the linearity of a function inviaitgr 2 ; +2 Jandis
de ned as
L= ——— 4.58
Yy (4.58)
@

where the numerator consists of the absolute value of therelifce between equations (4.56) and (4.57).
To gain a dimensionless normalized measure, the denomicasists of the derivative evaluated at the
mean (equation (4.56)). Linearity of a function may be assadiihL. 0 holds, since this implies that

% 2 0 which in turn means that the rst order derivative at meandoes not signi cantly

differ from the derivative at the endpoints 2 of the 95% con dence region.

Now that a measure of linearity for a given functigis available by linearity indek next it will be
shown, howL can be used to analyze linearity of XYZ and inverse depth @ngo

Remembering the pinhole camera model (see section 2.19¢aEdn of a poinP; = ( X;;V;;z) is
projected according to

- Xi
u= (4.59)

wheref denotes the focal length. Without loss of generality it mayassumed = 1, since other
values off would only scale the following considerations. To analyzetehaviour of XYZ and inverse
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dcos

dq

C1 Co C1 Co
(a) XYZ coding (b) inverse depth coding

Figure 4.4: Uncertainty propagation from scene poitto the image.(a) shows the scene for XYZ encoding,
while (b) displays the same scenario using inverse depth coding.

depth coding two camerds; andC; with focal length 1 at different positions are used. Both egas
observe the same poiRt. CameraCq will observe the point for the rst time and initialize thetasated
depth with a default value eithelp or ¢ = % dependent on the encoding method. The parallax angle

between the rays from the optical centersGyf and C; to point P; is approximated by the angle
between the optical axes of the cameras. The estimatecdhcista for cameraC; is therefore given by
the intersection of the two optical axes. Figure 4.4 deghitssetup. In the following the linearity of the
measurement equation (4.59) will be analyzed by the libearidex de ned in equation (4.58) for both
types of point encoding.

First consideP; in XYZ coding. Depth will be initialized with valuey and the depth error will be la-

beledd (see Figure 4.4a). The location error is assumed to be Gaussth mear0 (i,e.d G 0; f, )

and the actual depth is given By = dg + d. From Figure 4.4a it can easily be deduced that

dsin
d; + dcos

Xi

Zj
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hold. This allows for
dsin

= 4 +cos (4.60)

so thatu can be interpreted as a function dependent on Gaudsi@nbsequently the linearity index for
XYZ coding can be calculated. First the rst and second ortivatives ofu as de ned in (4.60) with
respect tal are given by

@u ds sin

=" _ - 4,61
@d (d, + dcos )? (4.61)
@u _ 2d;sin cos (4.62)

@8 (dy+ dcos )3

Applying equations (4.61) and (4.62) to de nition of thedarity indexL (see equation (4.58)) the
linearity index for XYZ codingL 4 is given as:

@u
©d 4o 2 ¢

Lg= = ﬂjcos( )i (4.63)
d;

@u
@dd=0

Accordingly inverse depth coding can be analyzed. In thi®dhe initial depth estimation will be
do = io while the actual depth will be denoted s= % where is assumed to be Gaussian with
mean0( G 0; 2). Itisalso assumed th&ét = dg+ d, d= D dg holds for depth location
errord. Therefored is speci ed as

d=D dy= ——
°" o(o )
Similarly to XYZ codingx; andz; can be expressed by o, andd; (see Figure 4.4b):
. sin
Xj=dsin = ———
' oo )
zi=dy+dcos =d;+ cos

oo )
Now u can be expressed as a function dependent on Gausaiaghis given by
sin

4= odi( o )+ cos (464

First and second order derivative wfn equation (4.64) yields

@u_ 3dy sin

@ (odi(o )+ cos)? (4.69)
@u 2 3di(cos  di o)

=" = 4,
@2 (odi(o )+ cos )? (4.69)
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From equations (4.65) and (4.66) the linearity indlexfor inverse depth is de ned as:

& .2 4
L = =0 =2 1 lcos
@u 0 0
@
4 d
=2 1 2cos (4.67)
0 d;

Now that linearity indices are available for both XYZ andénse depth coding a closer look at their
implications should be taken. For XYZ coding the 95% con demegion for the depth is de ned by the
initial depth estimationy and the standard deviation of the depth errgas[dy 2 4;do+2 4]. Since
this region should cover a large interval of depth valugseeds to be quite large. Note that O depth
may be included into this con dence region, but in nity canrbe included. For inverse depth the 95%
con dence interval is speci ed ab#; 5 12 ], where ¢ labels the initial depth estimation in inverse
depth and is the standard deviation of inverse depth erroBince appears in the denominator small
values are suf cient to express a large con dence regionteNbat while 0 depth cannot be included in
this con dence region in nity isincludediD2 [ o 2 ; o 2 ]holds.

If the VISUAL MONO-SLAM application is considered it is reasonable to assumethe observed
parallax is small, which implies  0) cos 1 andg—‘l’ 1. For these valid assumptions linearity
indicesL4 andL are consulted. According to equation (4.63) in this dage ‘tj—ld holds. Since 4
needs to be large for the con dence region to cover a largavat of depth valuek 4 in turn will also
be large which indicates no linearity in the speci ed in@rviFor inverse depth equation (4.67) can be
approximated a& 0, sincel g—g cos 0 holds under the given assumptions. Thus for inverse
depth coding the measurement equation (4.59) may be asdinead

For repeatedly observed points where parallax angiacreases, depth estimation becomes more
accurate, which means thatand respectively may become smaller. Large parallax anglesanad
standard deviationg mean that 4 will get smaller. That implies that points with low depth en@inty
at high parallax may be safely encoded by XYZ representatimte for these points the measurement
equation may be assumed linear. On the other handill still be small for such features, since the

increase of term1 g—‘j cos will be compensated by the decrease‘—‘eof (keep in mind that ¢ is

constant and the small values of may will further decrease for small depth uncertainty). Saeise
depth coding is suitable for both, newly initialized feasiat low parallax and features with low depth
uncertainty at high parallax.

4.8 Feature Initialization

As discussed in section 4.7 the XYZ parametrization laaksdrity for low parallax feature with large
depth uncertainty. Inference on the depth of a feature igpassible from one single observation, but
can only be gained by multiple observations if the paraltalaige enough.

This however would mean that potential features would havmtobserved over a certain time until
the uncertainty concerning their depth is reasonably I@fofe they can be added into the EKF. Such
an approach is somewhat undesirable, since the poterdialrés need to be observed like real features
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before they are added to the state veatoor discarded. Thus while needing about as much computa-
tional effort as features added to the EKF these featureidatas to not contribute to the estimation of
the camera state or the estimation of other features. Sicond could argue that such an initialization
phase is not part of “pure” EKF and should be avoided, but #tidity of this argument is doubtful, since

in the update step of MuAL MoONO-SLAM the EKF has already been tinkered with (see sectioh 4.6
While it was shown in section 4.7 that XYZ parametrizatiomds suitable to initialize features without
prior knowledge it also proved that the inverse depth isdireg both low and high parallax. Therefore
features in inverse depth coding can be initialized fron quee observation and be directly added into
the EKF. This way they are able to immediately contributehi® éstimation of the camera properties,

even if they are at low parallax. From equation (4.24) foliaat features at low parallax (i.¢. = +

is large) may not contribute much to the estimation of theerars positionr W, but will nevertheless
provide information about the camera's orientatephC .

In the absence of further knowledge the initial inverse kepith its con dence interval for a new
initialized feature should include 0 (meaning in nite depeven though this means that negative depth
values will be included int the con dence interval. In nigepth in terms of a camera just means that
no parallax of the feature will be observed. However if theneea translates and enough parallax is
produced the features depth estimation (via inverse deythyradually improve and the feature will
start to contribute more to the estimation of the cameratiposi

Having stated that new features should be initialized ielisg depth encoding with a depth estima-
tion that includes in nity a closer look at the actual inltation will be taken in the following. It is
assumed that by means of a corner detector or a feature gtes¢see subsections 3.1.1 and 3.1.2) the
IOC<';1tion(ud;i;vd;i)T of the new feature was already detected. A new feagureill be initialized by
function

-
Yi=Yy rWC;qWC;(Ud;i;Vd;i)T; 0 = Xci Yei Zeiooi i (4.68)
whererWC denotes the position of the optical center of the cangfs; its orientation and o indicates
the initial inverse depth estimation.
As already stated in subsection 4.2.3 the rst three coattdim of a feature in inverse depth encoding
specify the camera center at its rst observation so theaiigation of X, Y¢;i and z¢; is straight
forward:

T
Xei Yei Zei = r'e (4.69)

Acquiring azimuth ; and elevation ; involves a bit more mathematics. First the undistorted enag
coordinates(uu;i;vu;i)T are calculated vid,, (ud;i;vd;i)T (see equation (2.13)). Afterwards the direc-
tional vectorhV is calculated, pointing from the cameras optical centeatds the features location in
the world coordinate fram#&/. hV is de ned as

o 1 .
hx (Uo  Uui) g7
hW = E@hyvg =qg2r qV° %}(vo Vui) ;—VX (4.70)
hyV 1

whereg2r qW€ s the rotational matrix constructed from quaternig© (see equation (4.23)).
Thoughh% is no unit vector, according to the pinhole camera modelilit goints in the direction
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of the feature which will be at locationhW for some (unknown) 2 R*. From the directional vector
hW azimuth ; and elevation ; can be deduced, since it holds

0
| ! o arctanq hyY'; hyY

- — A (4.71)
: arctan  hW; (hW)?+(hW)?

That leaves the estimated inverse deptlas the sole not yet de ned parameter of equation (4.68).
This will be simply set to the prede ned initial depth estitioa, i.e. ;| = . In [13] Davison et al.
report that an initial depth ofy = 0:1 works well.

Thus by equation (4.68) the initial values for featyreare well de ned and can be appended to the
state mean ;. Subsequently the covariance needs to be adapted to the new feature as well. For the
moment the covariance before the addition of the new featiltde referred to as ?'d, while ¢ will
denote the updated covariance, already incorporatingnirgtion about newly added featuye. If the
dimensions of ?'d werengim Ngim the dimension of  willbe ngim +6  Nngim +6, since the associated
mean . of the covariance was extended by 6 dimensions. The addifiteaturey; to covariance 9
can be described by

1

fd 0 0
=J®o Q o0KJT (4.72)
0 0 2
with
dim( t)= Ngim +6 Ngm +6; dim 2 = ngm  Ngim;

dlm(J)= Ndim + 6 Ndim +3,d|m(Q|)=2 2

where matrixJ is constructed by agim  Ngim identity matrix and the partial derivatives of function
y (see equation (4.68)) and will be discussed in detail in Bogug4.73). MatrixQ, isa2 2 ma-
trix, containing the variance of the image measurementenaigl is constructed like matri®? (see
equation (4.49)). The entry? is the squared standard deviation of the estimated invesgthdso
in uences the con dence interval of the inverse depth. Th¢hars of [13] mention repeatedly that 0
should be included in the con dence interval of the invergptt, thus including features at in nity.
Therefore they propose forp = 0:1 a standard deviation of = 0:5, resulting in 95% con dence
interval of[ 0:9; 1:1] for inverse depth.

Next a closer look at the structure of matdixwill be taken.

| 0

@y @y 0O O ‘ @y Qy (4.73)
@wvc @v° @ugivd) @
where denotes agim  Ngim identity matrix. Next the Jacobians in the second row] ofvill be
analyzed. From equation (4.69) follows directly
!
@y _

gvic - ;dim( )=3 3, dim@)=3 3 (4.74)
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Unfortunately Jacobia@@v—{ is a bit more complicated and its structure is given by

@y
ave

where the zero matrices correspond to the Jacobiargo¥..i, zc; and ; with respect tagW ¢, indi-
cating that these components of featyrere not dependent on the camera's rotation. That Ie@%§

@ . , T
—@]W{: 000 B & 0 ;dim

=6 4 (4.75)

and _@i_ to be determined. These can be stated as:

@ _ @ @%W

@WC - @aWw @WC (4.76)

@ _ @ @YV 4.77

@WcC - @WV @W°¢ (4.77)
where- @ @WC denotes the Jacobian of directional vedidf from camera to feature in world coordinates

with respect to the orientation of the camera. Wlﬁv— is derived from equation (4.70), botgiw
and @V'v can be deduced from equation (4.71). The resulting Jacslaisnspeci ed as

o (W )2+(n¥)2

i

=i 0 E (4.78)
W %

@ o

(W) Z+( AW )2

0 W 1
p
((hW)2+( hW)2+( hW)z) (hy¥)2+(h¥)2
@ _ (hW)2+( hW)2
W - (hV)2+( hW )2+( hW)2 (479)
hW hW
Z
((hW)2+(hY )2+( hW)z) (hY)2+(h¥ )2
@W wc wc wc
_  @2(q ) w  @2(q ) w  @2(q ) w  @zr(a” )hW (4.80)
@"c @§° @f° @ff© @f© '

wcC
The appearance of equation (4.80) is quite similar to equai#.38) and the Jacobiar%m,

a@yc
wcC wcC wcC
@%(QC ), @12@;(;,(; ) d@‘zé(g,c ) are in fact calculated according to equations (4.41) — {4.44

A very interesting property compared to other EKF basedaliSLAM algorithms is the fact, that
the inverse depth parametrization used in this approachlenaghe EKF to work without any prior
knowledge about the scene. Usually the initial state of afrEi€ludes a number of given features with
known 3D position, to allow for camera state estimation anfdtter estimate the location of features
initialized later. The VsuAL MONO-SLAM algorithm presented here works just as well withoutrsu
information. It is impossible to correctly infer the positis of features xed to a given unit scale like
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meters for example without any additional knowledge, thoughis is due to the ambiguity of a small
movement of a single camera observing a close object anda ¢amera movement while observing a
distant object in terms of the information gathered by thee@. However the map created bysWAL
MoNo-SLAM without any additional knowledge will be consistentitself. If for one of the features
in the map the exact position in an existing coordinate sysseknown, a scale factor can be calculated.
If all features in the map are scaled accordingly by thisdiattie resultant map will closely correspond
to a map created by algorithms with prior knowledge.

Since the estimated positions of the features in the creatguwill settle to a scale of some value
the algorithm proves quite robust to different values of itiigal inverse depth o (given in the same
meaningless scale). A crucial point however seems to beritiasion of in nity in the con dence
interval (i.e. 0 should be contained in the con dence indf the inverse depth).

4.9 Feature Conversion

As discussed in section 4.8 a new feature will be initializethverse depth coding. In principle inverse
depth coding is suitable for low parallax features at lariggadces close to in nity as well as for close
features showing high parallax. This is re ected by equati4.24) that can cope with distant features
(i,e. i 0)and close features features. Please note that featuredeati® 0 = d, = il , i=1)
can not be modeled. However in practice such a feature witmiee included in the EKF since a depth
of 0 would imply that the feature's location correspondshe tamera's optical center (which would
result either in a broken camera or a feature location oatid camera's eld of view). Still features
in XYZ encoding have one property that makes them preferedabepared to features in inverse depth.
A feature in XYZ coding simply needs 3 dimensions less to Ipeagented. While this might not seem
much at rst glance the run-time of the EKF is speci ed @s k?* + n? (see [47]) wheré& denotes
the dimension of the measurement veapmandn denotes the dimension of the current state vector.
Ultimately the size of a feasible map ini&AL MONO-SLAM in terms of features is bounded by the
time available between the capture of two camera imagesi©fitne one share will be used mainly for
image related operations like feature matching and anetieme will be used by the visualization of the
current estimations. The remaining time has to suf ce tdqren all operation necessary for the several
EKF steps (see algorithm 4.1). Therefore whenever it is saf@nvert a feature from its inverse depth
encoding to the more compact XYZ representation this shbaldone. The remainder of this section
will be split in two parts: Firstly subsection 4.9.1 preseatsimple mechanism, adapting the linearity
index introduced in section 4.7 to determine if a point ingirse depth coding may safely be converted
to XYZ. Afterwards subsection 4.9.2 shows how the actualemion is accomplished.

4.9.1 Linearity Threshold

As discussed in section 4.7 the linearity index (equation (4.63)) provides a measure to estimate lin-
earity of the measurement function for a feature in XYZ emogd Therefore a sensible method to
determine if a feature may be converted from inverse depX¥Ma is to consult linearity index. 4 for

this feature and compatey with a given threshold. IE 4 is smaller than the threshold the feature can be
converted safely using the methods described in subseti88, otherwise it will stay in inverse depth.
To calculatel 4 three variables are needed, namely the estimated dgpthe standard deviationy of
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the depth con dence interval and the cosine of parallax @nglHow these values can be obtained by a
pointy; in inverse depth coding will be shown step by step:
First pointy; in inverse depth is converted iq in XYZ via equation (4.5). The rayIXYZ from
camera to the point can be calculated according to equati@0);, The estimated depth of the feature
of x; is the euclidean norm of the vector from camera to paint( kd}¥,, k). With the help of ; and
i the needed standard deviatio; can be obtained. If the mean of the inverse deptbf y; is stored
at positionn in mean vector ¢, then the standard deviation is de ned as

q

- 2 .
T t(mn)

2
where {.m)

from directional vectom ( ; ;) (see equation (4.6)) ant},, ascos = m( i; ;)" d¥%, kd®¥,, k L.
ThusL 4 can be computed by

refers to the element at positign; m) of covariance ;. Finallycos can be calculated

q
2
t(nn) T d¥,
Ld =4———m( j; i) —_—
ikd¥,, k kd¥,, k

By computing linearity indexX_4 for each point in inverse depth coding the linearity for tloe-c
responding XYZ point is obtained. lfy is below a speci ed linearity index, then the point should be
converted to reduce computational load for this point inffetterations. Point conversion is described in
subsection 4.9.2. The authors of [12,13] recommend a liyagaresholdL; for conversion ol.;  0:1.
This value was experimentally determined by a simulationuiing different values for, d; and .
The details of the simulation are omitted here. For detddage refer to [12,13].

4.9.2 Conversion Mechanism

In order to switch a point from inverse depth encoding to X¥gnesentation the current meanand
covariance ; of the EKF have to be modi ed. The former is fairly simple arehdbe done by using
equation (4.5), but the latter requires the computatiothefXacobian of (4.5), name%. This can be
obtained from equations (4.5) and (4.6) as

1 00 Lcos(i)cos( i) Lsin(i)sin( i)  %sin()cos( )
% = %O 10 0 +cos( ) Lsin( i) § (4.81)
I 0 0 1 <Lsin(i)cos(i) +cos(i)sin( i) Hcos(i)cos( i)

If the mean before the point conversion is denotedoé% (xv;fu iy fa ) with dimen-
siondim O'd = ngim , Mean  after the conversion will be; = (xy;fq1;::0 %5000 ) and its
dlmensmndlm od = ngm 3. Consequently covan?pce?'d has to be modi ed to create the new
covariance mcorporatmg the converted point. dfjy, = dlm (ft.j )+ 13 denotes the dimension-
ality of the camera and all points before poirdndbyim = j=|+l dim (ft;) gives the dimensionality

of all points behind point in the state vector, then covariance can be expressed as:

(= J ddgT (4.82)
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with
0 1
. 0 0
1=B0 & of:dim@3)= ngm 3 Ngm (4.83)
0 0

where 5 and pdenote identity matrices of dimensi@gi,  agim andbgim  byim respectively and
indicate zero matrices of appropriate dimensions.

4.10 Point Deletion

While not playing a part in theoretical descriptions of EKiélats applications for SLAM, the deletion
of features plays an important part in practice. Without deletion mechanism state vectar would

be ever-growing which slows down the performance of the ER&liable features which are matched
repeatedly should of course not be deleted, but there magelearés that will repeatedly not be matched
after their initialization. Such features will not conuiile to the state estimation in any way, but result
in additional computational effort. If such features armosed from the state vector, new promising
features may be added without endangering run-time contstrimposed by high frame rate of image
retrieval.

A sensible mechanism to detect if a feature should be deistedmeasure the ratio of successful
matches to the number of match attempts. If this ratio isvb@l@iven threshold (for example 50%),
the feature will be deleted. Though this mechanism is quitglke it preserves stable features outside
of the current eld of view. To add to robustness the matchiaiip should only be considered, after an
initial number of matches was attempted. Of course thischidea can be extended in various manners.
For example if a certain number of successful matches aceded for a feature its match ratio may be
reduced (since the high number of matches implies that fdaicecamera positions the feature is quite
stable and thus improves the overall estimation).

The deletion from the EKF itself is much more simple than tlditoon of a new feature. If point
fii is to be deleted it just needs to be removed from the curreahraad the covariance. If the index of
the rst entry of featurd; isj and its last entry ig + dim ( fi; ) these dimensions will just be removed
from  and columns and rows—j + dim( fi;) will be removed from covariance;.

Although not explicitly designed to do so the deletion max$ia may introduce some robustness to
a non static environment. If some distinct features arectiteon a moving object they will be added
to the EKF like any other feature. However if the estimatidémhe camera movement is stable enough
a feature on a moving object will repeatedly not be matcheitsipredicted search region and thus be
deleted again after a short time.
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Chapter 5

Evaluation

While chapter 4 and the previous chapters covered the thearédackground for VSUAL MONO-
SLAM, this chapter is devoted to a practical evaluation & tliscussed methods. First a simulation
of VISUAL MONO-SLAM is brie y introduced in section 5.1 along with the cted GUI to visualize
the results. Afterwards section 5.2 shows the experimamducted with real images as input.

All code produced for the evaluation was written@AC++. To keep things simple, visualization
was done in ®ENGL, mainly usingGLuT and GLUI ( [44] provides a good starting point for more
information concerning @ENGL andGLUT). Grabbing images from cameras and most of the image
processing tasks were done by or based egXV.

5.1 Simulation

Like for many other applications a simulation ofSUAL MONO-SLAM can become a valuable eval-
uation tool, since it provides a closed environment withaoy unknown parameters. From the rather
lengthy description of the principle description ofSAL MONO-SLAM in chapter 4 the reader might
have already guessed that the actual implementation®M. MoNO-SLAM also requires a lengthy
amount of source code. Usually the larger a program becoheekatger the possibility for bugs and
unforeseen side effects becomes. Considering that imagegsing often has to handle noise (see chap-
ter 3) and the nding the correct thresholds often requirethltime and ne tuning it may be hard too
determine if and in which part of the source code an error hbighHocated. In a simulation environment

it becomes possible to disregard image processing andugarioise induced by image processing to
evaluate the basic uAL MONO-SLAM algorithm.

5.1.1 Simulation Setup

To avoid processing of real camera images and leave as muotestode identical for both simulation
and real application a virtual camera was constructed.eSihsuAL MONO-SLAM was implemented
using C/C++, visualization and virtual camera were implemented PEQGL. The virtual camera ba-
sically consists of a vectot, to de ne its position, orientation and velocities (see atra(4.2)) which
enables the simulation to compare the actual camera stdidhei camera state estimated by the EKF.
Furthermore the virtual camera depicts the 2 dimensiormgéption of a scene rendered irPENGL that
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Figure 5.1: Virtual camera calibration(a) depicts a short calibration sequence for a virtual camerate lthat
the calibration sequence used for a virtual camera mightlie ghort, since distortion coef cientg andk, will

be 0. (b) shows the estimated extrinsics for the calibration seqaelepicted in (a). Estimated extrinsics were
obtained by the MTLAB toolbox [6].

corresponds to the image perceived by a camera de ned dngaim vectorx,. Surprisingly at it may
seem at rst, a virtual camera also has to be calibrated. Rdvee that the main goal of the simulation
is to evaluate the methods used in the real world applicaticam determined environment. Therefore
the measurement function discussed in section 4.4 use@dicpexpected measurements should not be
modi ed. Of course a virtual camera de ned inF@NGL will not exhibit lens imperfections like a real
camera. Therefore the distortion coef cierkg andk, (see equations (2.13) and (2.17) may safely be

assumed to be 0 and the image ceftey; vo) is located at Width ; helght -~ yoever a virtual camera

will still have one property that cannot be deduced easilgi@ctly corresponds to the parameters used
in OPENGL to de ne the projection properties. To predict the measuwent for a given point in the state
vector the focal length is needed (see equation (4.25)). Similar to a real cameraithml camera
can be calibrated by observation of a chessboard, with thedifference that the chessboard is now a
virtual chesshoard rendered irPENGL and projected from different viewing positions. An exdenfor

the calibration of a virtual camera is depicted in Figure 5.1

In the simulation the virtual camera will observe a scendaiomg virtual landmarks. Virtual land-
marks are speci ed by their 3D coordinates in the world camate frame. In the visualization they are
shown as solid white sphere. As perceived coordinates oftaavilandmark the projection of its 3D
coordinates for the scene depicted by the virtual cameradd.uThese coordinates can be easily ob-
tained by QPENGL. If the received coordinates are inside the search regfitine associated feature, the
feature resembling the virtual landmark inSWAL MoONO-SLAM is matched. Otherwise the feature
is not successfully matched. Thus the need for a matchindnamégm needed in the real application
can be avoided in the simulation. Otherwise the simulationke just like the real application, newly
observed landmarks may be initialized as new featuresjfestan be deleted and if the linearity index
for a feature in inverse depth is below the given threshdid,féature will be converted. The estimated
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map and virtual camera perspective for the simulation apéctil in Figure 5.2. The estimations for
each landmark are shown by wired ellipsoids. The color o&thigsoids indicates the current state of the
corresponding feature: Green ellipsoids were predictdgbtimside the current image and matched suc-
cessfully, red ellipsoids were not successfully matchatigray indicates that the feature was predicted
to be outside of the current image. Visualization for pointXYZ encoding is straight forward and
their uncertainty can be easily calculated by the variaf@masd on the main diagonal of the covariance
matrix. The indicate association between a landmark arabitesponding feature, both are labeled with
the same number. To visualize features in inverse deptmgdtiese need to be converted with their
corresponding covariance to XYZ representation as discugssection 4.9. Due to the linearity issues
with features in XYZ showing low parallax (see section 41 visualized uncertainty estimation for
features in inverse depth might sometimes show odd behawiitly vastly changing uncertainty ellip-
soids. However this is just a visualization issue, sincerisg depth features that should not be converted
to XYZ according to their linearity index, need to be conedrin order to visualize them. The estimated
camera position and orientation is marked by a blue coneremiie pinhole is located at the center of
its at side (i.e. the top of the cone indicates the oppositthe viewing direction). The estimated path
of the camera is drawn in yellow.

The simulation can be in uenced via a graphical user intafal he interface allows for manipulation
of the virtual camera by determining its linear and angukogities. This can be done either for a
predetermined number of frames or repeatedly until anatbermand is issued. A smooth return to the
origin in a given number of steps is implemented employindeBPS introduced in [43] to determine
the proper quaternion rotations. Furthermore severalingwptions enable the user to switch on and
of the display of uncertainty ellipsoids for XYZ or inversepth features and the like. The view on the
estimated map can be in uenced either via sliders in the GUblyoa rst-person shooter like navigation.
Since MsuAL MONO-SLAM estimates the positions of all features and the campesg without any
prior knowledge usually the estimates differ from the \aftlandmarks and camera, but a consistent at a
meaningless scale (see section 4.8). To better comparedhaiaonsistency of the estimated map with
the given virtual landmarks a scale vector for all featuias loe calculated easily, since the 3D positions
of the virtual landmarks are exactly known. To estimate ttaesvector 5 features position estimations
are randomly determined and compared with the positionsetorresponding virtual landmarks. The
resulting scale vector is then used to scale the visuadizadf all feature estimations accordingly.

5.1.2 Simulation Results

The simulation yields generally good results for the edtiomaof both, inverse depth and XYZ coded
features. Also the error in the estimated positions conthtwehe known positions of the estimated
landmarks is reasonable for features that have been oldermore than just a few frames. In Table 5.1
the scaled estimates for some selected features are pes@ntobtain the values shown in Table 5.1 the
virtual camera moved over a total of 210 frames, which is laefashort sequence. The exact velocities
and number of frames de ning the movement of the virtual canage shown in Table 5.2. Still for some
features enough parallax was detected so that they cowdty $af converted to XYZ coding. To give an
overall view the displayed features were selected accgritirihree criteria: Landmark depth, position
in the initial image and how often the feature was observathduhe 210 frames sequence. Note that
due to the random element in the scale vector not necestagilyest possible estimation compared with
the original value might be obtained (for example if a newilijialized feature is selected to contribute
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(a) Estimated map (b) Virtual camera view

Figure 5.2: Simulation view:(a) shows the estimated map. Landmarks are depicted as whigeesplthe 95%
con dence region for the estimation is illustrated by wirgtipses. The estimated camera position is marked by a
blue cone, where the pinhole is in the center of the at side(b)) the view from the virtual camera is depicted.
Note that this view is not exactly the view from the blue conda), since that is the estimation of the camera.
However the camera estimation should not differ signi ¢daftom the state of the virtual camera. No ellipsoids
are displayed in (b), since the estimated con dence regifonsot belong to the observed scene.

to the scale vector). To further evaluate the experimenhénsimulation the trajectory of the virtual
camera and the EKF estimation of the trajectory have beeagebhgFigure 5.3 shows a comparison of
the trajectories projected in th€Z -plane (Figure 5.3a) andY -plane (Figure 5.3b), respectively. The
estimation error in the trajectory peaks at the end of thé cesnera movement sequence at frame 100
(see Table 5.2). This can be explained by the camera moveBefure frame 100 the camera observes
new features and adds them to the current state vector, st of the initial features begin to drift
out of the eld of view. Afterwards the changing velocitiesore the camera in such a way that various
features are re-observed. Re-observations of this kindaweppose estimation (similar like real loop
closing) and therefore the pose error gradually becomeiegma

During experimenting with the simulation it became appttle rotations of the virtual camera,
induced by angular velocities play an important part isWAL MONO-SLAM. Position estimates ob-
tained if the virtual camera was just subject to linear vitileg were less accurate than movements fea-
turing both types of velocities. An interesting effect candbserved in the simulation for small linear
velocities in the absence of angular velocities: In thiedag predicted movements of the virtual cam-
era differ in the sign of the actual movements, i.e. if the esams moving along the positivé -axis the
EKF estimates a movement in direction of the negaXvaxis. Subsequently the features are estimated
behind the camera, since these positions would correspotie testimated camera movements. Inves-
tigation of this phenomena has not come up with a satisfa@wrplanation until now. For a hand-held
camera this effect may not prove important, since hand-tielices will always feature small rotations.
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Landmark frame 100  frame 120 frame 180 frame 210
description positon mean 3D mean 3D mean 3D mean 3D
ID: 1, low X 0 -0.03 -0.04 -0.03 -0.03
depth, centered, y 0 0.01 8 0.01 4 0.01 4 0.01 4
always observed z 5 5.07 5.21 4.92 491
ID: 10, high X 0 -0.23 -0.26 -0.33 -0.34
depth, centered, y 15 1432 8 14.73 8 14.82 8 14.858
always observed z 100 92.17 95.28 96.87 97.20
ID: 20, medium x -25 -13.43 -14.24 -24.81 -24.97
depth, lower right, y 5 271 8 2.83 8 499 8 5.01 8
sometimes observed z 20 10.67 11.22 19.92 20.03
ID: 7, medium x 30 2941 30.65 29.20 29.42
depth, upper left, y 20 19.70 8 20.29 8 19.53 8 19.67 8
often observed z 30 29.35 30.35 29.46 29.67
ID: 37, low X 15 15.27 15.53 14.51 14.54
depth, not in initial view y 0 -0.02 8 0.00 8 0.00 8 0.01 4
seldom observed z 5 5.14 5.12 4.85 4.85
ID: 43, medium X -45 - - -52.06 -48.99
depth, not in initial view, y 20 - - - - 23.13 8 21.70 8
seldom observed z 30 - - 35.36 32.99

Table 5.1: Position estimates from simulation. The table shows thenaséd positions for some selected features
during the simulation. The columns labeled 3D indicate & teature was already converted to XYZ encoding.
The scene with the virtual landmarks is depicted in Figuga5For a speci cation of the time steps please refer
to Table 5.2. If no estimation is given then the feature wahgerved until the corresponding time step.

frames v vy v 1 ¢ I S
0-99 1.300 0.500 -0.670 -0.050 0.120 -0.060

100-119 0.200 -1.700 0.400 0.100 -0.250 0.180
120-179 -2.300 -0.800 -1.500 -0.200 -0.130 -0.150
180-209 0.133 1.067 4.967 0533 0.026 0.318

Table 5.2: Virtual camera velocities de ning the movement for the esttes presented in Table 5.1. The velocities
from frame 180—209 describe a return to the origin.
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Figure 5.3: Camera trajectories in simulatio(a) shows a trajectory in th€Z -plane,(b) in the XY -plane. The
velocities for the camera of the trajectories are given inld&.2. The real trajectory of the virtual camera is shown
as a red line, while the green line shows the estimates ofrdiioeless YsuaAL MoONO-SLAM. Multiplying the
estimated trajectory with a scale vector results in the Majectory. LetterdA, B, C andD mark the changes
in camera velocities, according to Table 582 marks the position at fram@ (and frame 210)B the position at
frame100, C at120andD at180.

5.2 Real Data Experiments

Evaluating experiments with real data proved to be muchdraithn experimenting in the simulation.
In subsection 5.2.1 the qualitative results using two diffie image sequences created by the authors
of [13,16,20] have been used as input fasWAL MONO-SLAM. Afterwards in subsection 5.2.2 results
for real-time isuAL MoONO-SLAM using a HErRcULESWebCam Classic are discussed. For real-time
estimation feature comparison is done by image patch magchiere patches of sizZd 1land21 21
were tested. As a comparison measure for image patches itmalimed cross correlation (see equation
(3.16)) was used. The expected amount of predicted featwaeset tdlO - that means that new features
will be initialized if less tharlLOfeatures are predicted to be in the current image. The anubdehtures
was determined experimentally - less features led to quiaklly worse pose and position estimates,
more features did not signi cantly improve the estimatiart bnly increase computational load.

For complete image sequences SURF-features were testedadtemative to image patches. For
real-time estimation SURF could not be tested, since thertihe GPENCV implementation of SURF-
features nor the original implementation performs fastugiofor feature extraction at 15 — 30 Hz.

5.2.1 GivenImage Sequences

Two image sequences created by the authors of [13, 16, 2@] ien used to test the working of the
VISUAL MONO-SLAM implementation. Both feature images of sB20 240pixels and were obtained
by a 30fps re-wire camera with known intrinsic camera paeaens. One image sequence depicts
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6

(a) Camera image (b) Detail from scene

Figure 5.4: Detected features in outdoor scene. (&) the last frame of the outdoor scene is shown. Detected
features in the current frame are marked by a black numbergféen squares indicate the area where the image
patch was matched. Blue ellipses indicate the 95% con deeg®n. However the con dence regions are hardly
visible in the depicted scene, since they are smaller andehidy the matched regions (which indicates good
predictions). Sub gurdb) provides an image detail of (a) and contains all featuresrredi to in Table 5.3. For
better readability feature IDs are colored red.

an outdoor scene with varying lighting conditions showingtr@et with some cars in the foreground
and some distant features near the horizon. The sequencegtésshort, just providingl80 frames.
The second image sequence is longer, comprised0dframes. It shows an indoor lab environment,
containing mostly features showing high parallax that aaiokdy be converted to XYZ from their initial
inverse depth encoding. Since for the scenes shown in thgeisequences no known scale is provided
the evaluation can only be a qualitative, not quantitatiteshould be noted that Davison et al. do not
publish an quantitative analysis of the estimated 3D pmsstifor real image data in [13, 16, 20] either.

Using image patches for feature matching in both image semsethe visualized estimated state
of the camera matches well with the movements done in thegrsaguence. Also generally the depth
estimation seems to be consistent in the scenes. For examible outdoor sequence features located
on a car in the foreground differ in theircoordinate signi cantly from features on objects in the dial
or background as shown in Figure 5.4 and Table 5.3. Furtherfoo rotations and translations of the
camera seen in the image sequence, similar rotations arsidtians could be observed for the estimated
camera. A plot of the estimated camera trajectory duringsétggience is plotted in Figure 5.5.

To illustrate the progress of the location estimate therests for selected frames are depicted in
Figure 5.6. Note that in the initial frame (Figure 5.6a) thecertainty ellipsoids are very large and
overlapping, due to large uncertainty about the featurdhdeplowever for reliably matched features
the uncertainty quickly converges (Figure 5.6b). It shchddhoted that during the outdoor sequence no
feature is converted from inverse depth to XYZ represematiThis is due to the fact that in this short
image sequence no feature is observed over the whole segaadadhe number of successful matches
was not suf cient to push the linearity index below the threlsl of 0:1 (for the de nition of linearity
index, its analysis and meaning please refer to sectionanti4.9).
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Figure 5.5: Camera trajectory for outdoor sequence. During the segureccamera is rst moved a bit to the
right and afterwards to the left and in the direction of thgat&ve Z -axis. During this movement the viewing
direction is rotated slightly around the-axis. Afterwards the camera is moved roughly back to itsahposition.
(a) shows the estimated plot in t&Z -plane which qualitatively ts the observed camera trajegtwell. In (b)
the trajectory in th&'Y -plane is plotted. While during the sequence rst an upwaocdement of the camera could
be noticed in the end it is moved downward again. This is asected in the plotted trajectory. A comparison
with the ground truth as in the simulated case (see Figujdsridt possible.

Similar results could be obtained for the indoor sequenbés Jequence, being much longer than the
outdoor sequence and being in an indoor environment wittarawy features provided much parallax
for every stable feature. In fact at the end of the indoor saqe every feature in the estimated map is
encoded in XYZ. Two exemplary frames from the indoor seqaesre depicted in Figure 5.7. Using
image patches of1 11 or 21 21 pixels did not have any signi cant in uence on camera pose
estimation or the estimated positions of feature locations

Using SURF features instead of image patches showed lessging results. Though SURF fea-
tures are generally considered stable and have succgdsfidh used for object recognition task single
SURF features proved not to be as locally stable as imagbgmté&or object recognition tasks it might
not be crucial if a matched SURF feature might be detecteaotveo pixels off from its actual location,
but in an application like VsuAL MONO-SLAM such an error may af ict the current pose estimation
and subsequently the predictions and estimations for thifreene. Sometimes features can be observed
to slightly move around in the image, which is rather fataltfee state estimation. Examples for faulty
feature matching for SURF features are depicted in Figi8e 5.

5.2.2 Real Time Estimation

Results obtained using the given image sequences with ipaigé matching were encouraging with
respect to the obtained maps, so that the same method wasdrtrieal-time. For image retrieval a
HerRcuLEsSWebCam Classic was used, where the native resolution wassibabed t820 240pixels
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Position in scene Feature ID X y z
rearview mirror 2 0.5652818 -1.136854  7.700869
Car rm 6 -0.8424688 -2.723368  7.394391
headlight 7 -2.616124  -1.217564  7.140176
right 0 -19.60458 3.135008 22.95719
Background center 5 -9.627525 2.788888 27.84539
left 8 -1.600957 3.779855 31.05553

Table 5.3: Position estimates for selected features of the outdoaresezp. The feature IDs refer to the number
depicted in Figure 5.4b. Of special interest is the last molishowing the estimate of tteecoordinate. From

a qualitative standpoint the depth estimates obtains theat®d estimations: The coordinates of the features
located on the car in the foreground are similar and diffgnistantly from the estimates of the features located
in the background. Judging from Figure 5.4b feature 8 of tiekbround features #8 is the farthest, while feature
#0 is the closest. This is resembled in the estimates of tteordinates.

and camera calibration parameters were determined by tkie A8 toolbox (see [6]). However real-
time results with the HRcuLES WebCam Classic do not achieve comparable quality as witkyitres
image sequences. One main difference between the camerayBavison et al. in [13, 16, 20] and the
low-cost HERCULES WebCam Classic is the actual number of frames provided bgdheeras. While
Davison et al. report a stable frame rate of 30 fps which mearew image is obtained every 33 ms the
time to retrieve a new image with thegrcuLes WebCam Classic uctuates. While the manufacturer
claims frame rates of “up to 30 fps” the actually obtainedrfearate is roughly 15 fps. Unfortunately that
does not imply that a new image will be obtained ever 66 msnascould guess at rst, but retrieval
times between 45ms and 118 ms have been recorded. Keep irthainihe time between two images
in uences the prediction of the next camera pose (see sedti8) and will induce larger uncertainty
about the features expected position. Furthermore theepert features proved less stable than the
features obtained in the given image sequences. Sometimagrig features” similarly to the effect
observed for SURF features on the image sequences couldsbeveld, with equally bad effect on the
estimated camera pose. And once the error in the pose dstinb@comes too large, even stable features
will not be matched anymore, since they will not be at thepiested positions in the image. Increasing
the threshold for the response (see 3.1.1) inhibits thecgfbut led to less accepted features in the rst
place. This reduced amount of information gained by thaufeatworsened the pose estimation, so that
the ultimate effect is the same as for “moving features”. it noment it is not clear, why these effects
could not be observed in the given image sequences, but guests would be that the image quality
obtained by the IHRCcuLESWebCam Classic is worse than the images in the sequencey ttisinative
resolution of640 480 pixels seemed to lead to more image noise, resulting in amfaster lost pose
estimation.

Therefore at the moment no meaningful results can be pedat the real-time estimation, but
it should be noted that used thresholds and parameters gdntm play at various parts of the algo-
rithm in uence the outcome greatly. Fine-tuning of theséuea proves to be very time consuming and
sometimes more art than science.
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(a) Frame 0 (b) Frame 50

(c) Frame 100 (d) Frame 150

Figure 5.6: Progress of map estimation for outdoor sequence. The eitipsllustrate feature uncertainty, esti-
mated camera pose is depicted by a blue cone. Green ellfpsdiidate a successfully matched feature, red means
no successful match and gray ellipsoids are not predictéé ton the image sensor. While the estimated map in
(a) does not convey much information, due to large uncertaimtyefich feature, estimation quickly improves as
seen in(b). Re-observation of features can signi cantly improve thestimated positions as seen for feature #0
(the feature close to the positive-axis) in the different estimation ifc) and(d).

AN ANALYSIS OF VISUAL MONO-SLAM



5.2. REAL DATA EXPERIMENTS 83

@)

Figure 5.7: Exemplary frames from the indoor sequence. Red indicatssazessful matching attempts, while
green indicates successful matches.

@) (b) (©) (d)

(€) ® @) Q)

Figure 5.8: False matches using SURF. The top rda) (d)) depicts so called SURF features extracted by
OPENCV. The OPENCV implementation was inspired by the original surf papdrlfdt is not equivalent and
performs oftentimes worse. In the second rde) & (h)) results from the original SURF implementation are
shown. All matches were considered successful and theréektcation is in the center of the green square. In
both cases signi cant movement of the depicted featuretipostan be observed. Therefore in the context of
VISuAL MoNO-SLAM these features are not suitable.
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Chapter 6

Discussion and Outlook

This thesis provides a detailed analysis aBVAL MONO-SLAM along with the underlying methods
from image processing in chapter 3 and camera models in@hdptThe basic idea of the extended
Kalman lter was brie y introduced in section 4.1 and elabted by the exemplary applicationSUAL
MoONO-SLAM in the remainder of chapter 4. The achieved resultagusin QPENCV and QPENGL
based implementation were presented in chapter 5.

While qualitatively encouraging results could be obtaifedwo given image sequences, the current
implementation did not yield useful results applied on &astn obtained by a low-cost USB camera.
Further parameter tuning and testing will be needed to enstiable pose estimation in the real-time
scenario which is crucial to a properly workingAL MoNo-SLAM implementation.

To improve results for the given image sequences and a wprigal-time application the image
patch matching should be addressed further. In the currepleimentation obtained image patches
are just compared to the patches from other images insid@5¥econ dence region of its associated
features. While this yields reasonably good results in ntases, it still lacks some desirable properties:
Matching will not be rotational invariant nor will image phaes be matched if the difference between
the current point of view and the point of view of the rst olbg&tion becomes to large. Two strategies
could be employed to address this problem: Firstly one costlavariable image patclinstead of a
constant one. This would mean that for every successfulhhmatan image patch, the patch stored along
with the feature will be replaced by the matched patch fromdhrrent image. Since orientation and
point of view of an image patch will usually change continsiguand not abruptly over a sequence of
received frames this could provide rotational invariantmng with robustness to changes in point of
view and scale. However if the camera performs a loop motien the variable image patch will less
likely be matched at the loop closing, than a constant imagehp Secondly image patches could be
transformed according to the currently estimated camesa.pbhis would require for each image patch
to have a unique orientation which could possibly be obthimedirectional vectom ( j; i), dependent
on azimuth ; and elevation ; at feature initialization. With this orientation for an imdiual feature,
its estimated position and the estimated camera pose ofe tcpto transform the image patch to best
resemble expected patch under the current point of view. édewsome thresholds will be needed for
this approach since the transformation will likely resultai blurred patch, so that for small changes in
the point of view this technique may actually provide worssults than the simple matching approach.
Furthermore if the estimation of the feature position haargd uncertainty as for features just after
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initialization, such a transformation will reduce the pabbity of successful matching. Eventually a
combination of both, variable image patches and image padcisformation, may be bene cial. On
the other hand other methods apart from image patches sheukkted as well. A recently developed
feature descriptor like ENSURE [2] might be interesting, since its authors claim realdipapabilities
and robust matching.

Also the number of features matched for one frame could beeaddd. If more features than the
desired number for stable estimation are predicted to bel@im the current frame, one could limit the
amount of features that will actually be searched in the En#gus reducing computational effort. The
uncertainty of the expected features could be used as astietwiselect the features: If the uncertainty of
a feature is large observation of this feature will usuallydnmore impact on the overall estimation than
the observation of a feature whose position is already welihn. Thus features with a high uncertainty
should be preferred compared to low uncertainty features.

Extending the simulation could also provide some additiomsghts. Up until now image noise has
not been regarded in the simulation - for every observaldaufe a perfect match can be obtained. In-
troducing the user with the ability to experiment with diffat image noises or the noise of the transition
function might be interesting. In addition a different madhto in uence the movement of the virtual
camera apart from the values for the 6 velocities is needediriulate shaky movements of a hand-held
camera a noise function affecting the velocities shouldniyg@émented, as well as a simpler method of
input to direct the camera instead of tediously insertirgdasired velocities would be bene cial.

Different transition functions in simulation as well as retreal application could be used to model
scenarios different to the hand-held camera. For exampledmera is mounted on top of a robot, ac-
tions in uencing the robots pose like steering commandsikhbe incorporated in the state transition to
improve a priori pose estimation. In this case one couldthisdk of sensor fusion with other sensors like
laser based range nders or time-of- ight cameras. Whilaga nders provide better depth measure-
ments, thus yielding good information about translatiomalvements, rotations are reliably estimated
by VisuAL MoONO-SLAM. Even if the detected rotation is not accurate it migbtve as a rst guess
used in scan matching approaches, since these generdtlybgitter results the closer the initial pose
estimation is to the actual pose.

If fully operational for real-time operation, gUAL MONO-SLAM could provide a powerful tool as
a stand alone application for hand-held cameras and moentadnobile robot platform for 6DSLAM
with sparse 3D maps. Furthermore in the domain of mobileticdthe estimates obtained by3UAL
MoNoO-SLAM could be used in a sensor fusion approach togetheratiiter sensors to improve overall
map quality. This could either be done by combining odomatrgt or gyro compass measurements to
in uence the state transition of UuAL MONO-SLAM or by employing the camera pose estimation of
VISUAL MoONO-SLAM as an initial pose estimation for scan matching apginea.

As a nal remark it should be mentioned that creating a fulhemational version of YsuAL MONO-
SLAM, yielding results comparable to those of Davison et r@quires a lot of work in two respects.
Firstly the software infrastructure needs to be createfbreeany meaningful experiments may be con-
ducted. In this respect the overall robustness of the EKFsnmetimes become actually a disadvantage,
since it may cover eventual implementation bugs. Secomdiyletermination of various parameters and
thresholds like image patch size or the required numberatfifes needs time and patience.
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