
Morphology Mining:
Comparison Between Selecting Inflectional Classes Using

Unsupervised Corpus-Compression Methods vs Googling the
Solution

Bachelor’s Thesis
by

Thorben Krüger
thkruege@uos.de

Cognitive Science
University of Osnabrück

November 2009

First Supervisor: Prof. Dr. Stefan Evert
Second Supervisor: Dr. Helmar Gust

Für Katha

Abstract

Unknown-word categorization remains an important topic in the field of
computational linguistics, because a language constantly evolves new words
(e.g.) to accommodate novel concepts. It is hard to cover all results of this
process using just static word lists or lexicons. In the past, some work has
been done to fill this gap for the German language. For this purpose, a
lexicon-less finite-state morphology has been built, that can offer hypotheses
about possible morphological features for a given word form.
This thesis concerns itself with the evaluation of two different approaches for
the determination of the correct explanation of a word form from such a set
of hypotheses.
The first approach explores the possibility of using methods and theoretical
considerations derived from the minimal-description-length principle (MDL)
to find a mapping between corpus word-forms and hypotheses that would al-
low for a maximal compression of the corpus. By Ockham’s razor, this mini-
mal mapping is expected to mostly incorporate the correct choices. However,
although this effect is certainly visible in the results, it does not appear to
be strong enough to suggest a practical applicability of this approach.
The second approach attempts to use the “number-of-hits feature” as re-
turned as meta data by modern web search-engines in response to any query
to gain a confidence measure on each particular hypothesis for the explana-
tion of a word form. Even using a basic heuristic on the returned meta data
to determine the most likely correct hypothesis already achieves a satisfac-
tory level of accuracy, suggesting potential for further improvement.
This thesis concludes with remarking that while the first approach makes use
of a compelling theoretical background, further investigation should concen-
trate on the more promising, data-mining-oriented second approach.

Contents

1 Introduction 3
1.1 Basic Concepts . 5

1.1.1 Morphology . 5
1.1.2 Compression . 6

2 Unsupervised Maximization of Corpus Compression 7
2.1 Previous Work . 7
2.2 Theory of Corpus Compression 8

2.2.1 Data Compression . 8
2.2.2 Representation of Word Forms 9
2.2.3 Storing the Corpus . 13
2.2.4 Storing the Model . 13
2.2.5 Summary . 14

2.3 Practical Considerations . 15
2.3.1 Approximations . 15
2.3.2 Simplifying Assumptions and Abstractions 16

2.4 Methodology . 17
2.4.1 Procedure . 18
2.4.2 System Features . 19
2.4.3 Dynamic Programming 19

2.5 Results . 21

3 The Web-Search-Hits Approach 27
3.1 Introduction . 27
3.2 Approach . 28

3.2.1 Dealing with Word Form Ambiguity 29
3.3 Procedure and Implementational Details 30

3.3.1 Corpus and Gold Standard 30
3.3.2 Morphology Modification 30
3.3.3 Accessing Search Engines 33
3.3.4 Result Collection . 34
3.3.5 Result Analysis via Simple Heuristic 35

3.4 Results . 35
3.4.1 Remarks on Search Engine Performance 35

4 Discussion 37
4.1 Two-Level Compression . 37
4.2 Search-Engine Hits . 38
4.3 Comparing the Approaches 38
4.4 Outlook . 39

5 Conclusion 41

A Notation by Example 47

B Legal Gray Areas 49
B.1 The Yahoo! BOSS API ToU agreement 49
B.2 The Microsoft Bing Web Service API ToU agreement 50
B.3 The Google AJAX Search API ToU agreement 51

List of Figures

2.1 Model training run (until termination) using (slow) accurate
Huffman-tree length-calculation. Plot shows compression bit-
length versus gold-standard accuracy for randomly initialized
model . 22

2.2 Model training run (until termination) using (slow) accurate
Huffman-tree length-calculation. Plot shows compression bit-
length versus gold-standard accuracy for gold standard initial-
ized model . 22

2.3 Model training run (until termination) using (fast) worst-case
Huffman-tree length-calculation. Plot shows compression bit-
length versus gold-standard accuracy for randomly initialized
model . 23

2.4 Model training run (until termination) using (fast) worst-case
Huffman-tree length-calculation. Plot shows compression bit-
length versus gold-standard accuracy for gold standard initial-
ized model . 23

2.5 Corpus-compression size versus model-compression size for
both accurate and fast approach to Huffman-tree size-approximation
for randomly initialized models 24

2.6 Comparison of model training runs using both approaches to
Huffman-tree length-approximation. Plot shows compression
bit-length versus gold-standard accuracy for randomly initial-
ized model . 24

2.7 Naïve approach that minimizes only corpus compression for
accurate Huffman-tree length-calculation and gold standard
initialized model. 25

2.8 Naïve approach that minimizes only model compression for
accurate Huffman-tree length-calculation and gold standard
initialized model. 25

2.9 Comparison compression-size levels between both naïve ap-
proaches. 26

List of Tables

2.1 Overview of Notation . 9

3.1 Numbers of Nouns, Ordered by Gender 35
3.2 Accuracy Percentages for each Search Engine 36

Acknowledgements

I would like to thank my superviser Stefan Evert for suggesting such interest-
ing and hands-on topics for me to write about and Peter Adolphs for laying
the foundation for this work by providing me with the necessary documen-
tation and scripts from his diploma thesis. Without the significant support
and advice I received from Katharina Wilmes, Thomas Göbel, Andreas and
Detlef Krüger, this work in its current form would not have been possible.

1

2

Chapter 1

Introduction

The vocabulary of a natural language is usually not finite. Most languages
readily accommodate references to novel objects or concepts, which humans
happen to conceive on a very regular basis. A language usually readily ac-
commodates the verbalization of such a novel idea by means of open class
(or lexical) words, which in many languages are counterpart to closed class
(or function) words.

Closed class words mainly add grammatical information, which means
that they are predominantly defined by their syntactic behavior. Compared
to the open class vocabulary of a language, their usage also varies very little
over time. As such, closed class words are considered the core of a language.
The fact that there are finitely many such words for any given language is
implied by the name closed class words. Their inherently enumeratible na-
ture facilitates their automated recognition and categorization even in large
texts of obscure content. (Content-carrying words are usually not closed
class words) ([van Gelderen, 2009] ,[O’Grady et al., 1997])

On the other hand, the open class words of many languages are usually
subject to morphology-altering processes such as affixation/derivation, in-
flection and compounding. While for the English language these processes
are still comparatively restricted to a minimum of complexity1, matters seem
to be increasingly non-trivial for many other languages.

As an inflecting language with three grammatical genders and four cases,
German has a particularly complex morphology, occasionally (in the case of
some adjectives) resulting in more than a dozen different possible forms for
a single word belonging to an open class. As a result (e.g.) the automated

1Perhaps a reason for the wide adoption of English as the new lingua franca.

3

CHAPTER 1. INTRODUCTION

lemmatization2 of German texts can be a difficult and error-prone process,
especially when auxiliary information as, e.g., part-of-speech (POS) tags is
not present.

When viewed from a purely morphological perspective, German (open
class) word forms are ambiguous: A word form could have been formed from
different underlying word stems and/or a number of different morphological
affixation processes.

There exist implementations of morphological grammars for the decom-
position of word forms into stems and affixes, although they commonly
rely on an existing and extensive lexicon for stems. In his diploma thesis,
[Adolphs, 2008] adapted parts of the SMOR ([Schmid et al., 2004]) computa-
tional morphology for German to produce a system capable of hypothesizing
on possible stems of a word form without having to rely on a stem lexicon.
This then formed the basis for a system intended for the creation of an inflec-
tional lexicon for German, i.e., a lexicon listing stems and associating each
stem with a continuation class denoting how this stem is to be inflected to
form all its derivable word forms permitted by the (German) language.

Adolphs’ hypothesizer offers a range of morphological explanations (hy-
potheses) for any given word form. (See Example 1.1 below for a sample
output). However, in most cases, only one of these hypotheses is correct. In
his work Adolphs applied several simple heuristics based on statistical data
of word observations. This technique was successful only to some degree.
This thesis concerns itself with exploring two additional and very different
approaches for tackling this issue.

The first and more information-theoretical approach builds upon ideas
from the Minimum Description Length Principle in order to determine the
correct mappings between corpus word forms and corresponding hypotheses
by creating and incrementally minimizing a model for a compressed repre-
sentation of the corpus that makes use of stems and continuation classes to
encode word forms using as little space as possible. As will be discussed be-
low, this approach relies on the assumption that the smallest compression of
the corpus can be achieved with a model encorporating the highest number
of correct mappings between word forms and hypotheses.

2lemma: the basic form of a word, for example the singular form of a noun or
the infinitive form of a verb, as it is shown at the beginning of a dictionary entry.
([Oxford University Press, 2009])

4

CHAPTER 1. INTRODUCTION

The second approach tries to address the problem using internet data-
mining. It is attempted to find the correct interpretation of a word form
by taking each interpretation hypothesis and generating all potential word
forms describable by the hypothesized stem and continuation class before
constructing and executing internet search-engine queries from these word
forms. The number of returned results for each query is compared. The
interpretation with more hits than another is considered to be more likely
to be the correct one.

1.1 Basic Concepts

Some basic concepts and terms used in this work are outlined in this section.

1.1.1 Morphology

Inflectional/Continuation Class

A set of morphological rules to generate inflected word forms from a set of
stems can be grouped under an inflectional class that represents the mor-
phological features of this inflection. By being inflected, a stem usually gains
a suffix, i.e. “is continued ” justifying the alternative expression of continua-
tion class. With knowledge about the inflectional class of the stem, all its
possible inflections (i.e. word forms) can be inferred and generated. For the
purposes of this thesis, an inflectional class is represented as a string enclosed
by angular brackets, e.g. <VVReg>. This notation for inflectional classes is
shared by all morphological systems used in this thesis.

Morphological Hypothesizer

A morphological hypothesizer as used in this work accepts a (fully inflected)
word form as input and generates a set of hypotheses (i.e. possible morpho-
logical interpretations), each consisting of a stem and associated inflectional
class. (See Example 1.1 below.) The input word form could have been
constructed using any of the resulting hypotheses.

(1.1) Set of possible morphological hypotheses for the word “fangen”:
<ge>fang<VVReg>, <ge>fangen<VVReg>, fang<VVReg>,
fangen<VVReg>, fangen<Adj+>, fangen<Adj+e>, fangen<Adj+(e)>,
fange<Adj+>, fange<Adj+e>, fange<Adj+(e)>, fang<Adj+>,
fang<Adj+e>, fang<Adj+(e)>

5

CHAPTER 1. INTRODUCTION

1.1.2 Compression

Minimum Description Length

In general, the minimum description length (MDL) principle can be used as
a method for the selection of an explanatory model from a set of competing
models that has the best chances for describing a set of data.

One of the core assumptions of this approach is that by conducting statis-
tical inference, one primarily attempts to find regularities in the given data.
Once such regularities have been identified, they enable us to compress the
data by means of refering to inferred rules that govern these regularities. In
this vein, learning, i.e., recognizing patterns, can be viewed as data compres-
sion: the more one is able to compress information (generalize), the more
one has learned.

MDL realizes this insight by choosing the hypothesis or a selection of
hypotheses from the set of all hypotheses H as best describing data set D,
if their application compresses D most.

6

Chapter 2

Unsupervised Maximization of
Corpus Compression

This chapter discusses theory and practice of automatically finding the high-
est number of correct mappings of word forms to their respective stem and
inflectional continuation class by means of finding a maximal compression
of the corpus containing the word forms. Since the compressed corpus data
is strongly associated with the model that facilitaed the compression, this is
sometimes called two-level coding.

2.1 Previous Work

There are numerous previous works regarding the automated analysis of
word forms, some of which take two-level approaches similar to the one that
is presented here. In his dissertation, [Koskenniemi, 1983] is apparently the
first to give an account of this approach for the morphological analysis of
highly inflecting languages such as Finnish or Russian. My work is partic-
ularly influenced by [Goldsmith, 2004] and [Goldsmith, 2001] on applying
MDL principles to unsupervised learning of natural language morphology.
In case of the model design, I heavily borrow from [Goldsmith, 2004].

[Grünwald, 2007] is a general and very readable book about the Mini-
mum Description Length principle, while [Grünwald, 2004] offers a shorter
introductory tutorial on the matter. Grünwald’s work in general covers the
essential theoretical background information needed for this approach.

Finally, [Vitanyi and Li, 1999] point out that data compression is “almost
always the best strategy, both in hypothesis identification and prediction”.

7

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

2.2 Theory of Corpus Compression

I am interested in finding the correct morphological continuation classes for a
set of stems. In order to do so, I leave (most) linguistic considerations aside
in order to simply exploit the effects predicted by Ockham’s Razor: The
best (correct) morphology, when used for the compression of the corpus, will
also lead to the best (smallest) results. If this premise is correct, then by
searching for a the highest compression I should find models of increasing
accuracy.

2.2.1 Data Compression

In general terms, data compression minimizes a data set by identifying and
replacing every repeated instance of a reoccurring segment with a (poten-
tially shorter) reference (or pointer) to a single copy of this segment.

This raises the question of how to best chose short pointers as replace-
ments for every occurrence of a redundancy within a text. The answer lies in
variable-length coding as employed in Huffman trees for instance. Huffman
coding is a mechanism that determines a unique bit sequence for an element,
based (for example) on the element’s frequency within a data set. This “en-
tropy encoding” technique assigns shorter bit sequences to more frequent
elements and longer sequences for the rarer ones. An additional property
of the code sequences is that they are “prefix-free”, that is, the bit sequence
representing some particular element is never a prefix of the bit sequence
representing any other element.1 This is a consequence that stems from the
underlying concept of a binary-branching tree that has both internal and
leaf nodes: The two successor nodes of any internal node are “addressed”
using bits 0 and 1 respectively. A leaf node “stores” a particular element and
traversing the tree from the root node to this leaf node traces a unique path
over the “addresses” of the intermediate nodes. This path corresponds to the
resulting code for the stored element. Because there are no successor nodes
to a leaf node, it becomes clear why any code can never be the prefix to a
longer one. It follows that such codes can be concatenated without losing
information. To compress a data set, one replaces each element with its cor-
responding (nearly) entropy-optimal code, which is obtained when entering
the element into the binary tree. (For details on the algorithm that generates
these codes, see [Huffman, 1952].) Any redundancies in the set of elements

1Perhaps confusingly, the term “prefix code” often refers to this very property as well.

8

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

from the data set thereby get deflated to the length of its corresponding
code, which can result in an overall shorter representation.

(The important question of how to best segment the input data in order
to find the best compression ratio is not explored here, because the data I
am going to compress will be segmented in a very well-defined way. More
on that later.)

2.2.2 Representation of Word Forms

C the corpus, a (finite) stream of text
W the ordered set of different words in C
wn the nth word in W
fn the frequency of wn in C
Hn the ordered set of morphological hypotheses for wn

hnk the kth hypothesis in Hn

snk the stem hypothesis of hnk
cnk the class hypothesis of hnk
Pnk the ordered set of word forms predicted by hnk
pi the ith predicted word form in Pnk

HY P (wn) the function that generates Hn from wn

GEN(hnk) the function that generates Pnk from hnk

Table 2.1: Overview of Notation

Let W be an ordered2 list of all word forms from a corpus C. Then then
the nth word form in W is denoted by wn. The frequency of wn in C is
fn. Let the system that produces stem and class hypotheses for a word form
be represented by the function HY P . When using wn as an argument to
the function, it returns the corresponding set of morphological hypotheses
denoted by Hn. Each hypothesis hnk ∈ Hn consists of a stem snk and a
morphological continuation class cnk. A hypothesis hnk can be used with
the function GEN(hnk) (i.e., the inverse of HY P) to generate the ordered
set Pnk containing all potential word forms that hnk describes.

Example 2.1 shows a sequence of words that represents a toy corpus C.

(2.1) “Der dicke Navigator repariert den Kompressor des dünnen
Navigators”

The corresponding ordered set W of open class words in C is shown in
Example 2.2.

2i.e., deterministically sorted according to a pattern

9

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

(2.2) “dicke”, “dünnen”, “Kompressor”, “Navigator”, “Navigators”, “repariert”

Example 2.3 shows part of each set of possible hypotheses Hn as gener-
ated by the function HY P (wn) for each wn ∈W .

(2.3)
Word Form Hypotheses

“dicke” dicke<Adj+>, dick<Adj+>, dick<Adj+e>, ...

“dünnen” dünnen<Adj+e>, dünne<Adj+e>, dünn<Adj+e>, ...

“Kompressor” Kompressor<NNeut_s_s>, Kompressor<NMasc_s_en>,...

“Navigator” Navigator<NFem_0_s>, Navigator<NMasc_s_en>,...

“Navigators” Navigator<NFem_0_s>, Navigator<NMasc_s_en>,...

“repariert” reparier<VVReg>, repariert<Adj+>, ...

Selecting one hypothesis (hnk) for every wn ∈W might result in choices
as displayed in Example 2.4. For demonstration purposes, two different
hypotheses for “Kompressor” and “Kompressors” were selected.

(2.4) dick<Adj+e>, dünn<Adj+e>, Kompressor<NMasc_s_en>,

Navigator<NMasc_s_en>, Navigator<NFem_0_s>, reparier<VVReg>

Example 2.5 lists the ordered set of word forms Pnk predicted by the
GEN function for each hnk. The observed word form wn among each Pnk is
emphasized for convenience.

10

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

(2.5)
Hypothesis Set of Predicted Word Forms
dick<Adj+e> “dick”, “dicke”, “dicken”, “dicker”,

“dickere”, “dickeren”, “dickerer”, “dick-
erem”, “dickeres”, “dickem”, “dickes”,
“dickest”, “dickeste”, “dickesten”,
“dickester”, “dickestem”, “dickestes”

dünn<Adj+e> “dünn”, “dünne”, “dünnen”, “dünner”,
“dünnere”, “dünneren”, “dünnerer”,
“dünnerem”, “dünneres”, “dünnem”,
“dünnes”, “dünnest”, “dünneste”,
“dünnesten”, “dünnester”, “dünnestem”,
“dünnestes”

Kompressor<NMasc_s_en> “Kompressor”, “Kompressoren”, “Kom-
pressors”

Navigator<NMasc_s_en> “Navigator”, “Navigatoren”, “Naviga-
tors”

Navigator<NFem_0_s> “Navigator”, “Navigators”
reparier<VVReg> “reparier”, “repariere”, “reparieren”,

“reparierend”, “reparieret”, “reparier-
est”, “repariert”, “reparierte”, “repari-
erten”, “repariertet”, “repariertest”,
“reparierst”

Because GEN is the exact reverse of HY P and the function HY P and
GEN are deterministic (i.e., given the same input they will always return
the same results in the same order), the following condition holds for all
cases: for all wn ∈W and for all hnk ∈ Hn there exists a pi ∈ Pnk such that
pi = wn. This index i of the corpus word form wn in Pnk is a crucial part in
the compression of the corpus: To encode wn using my model, I first chose
a hypothesis hnk (from the set of all hypotheses Hn that can describe wn).
Applying hnk to the GEN function produces the ordered set Pnk of all word
forms that are predicted by hnk. The original word form wn is guaranteed to
be among the members of Pnk. Since Pnk is an ordered set, I can uniquely
refer to any of its members using indices. As a result and using the GEN

function, I can encode wn in terms of hnk and the unique index i for the
predicted word form pi ∈ Pnk where pi = wn. In short: wn = GEN(hnk)i.

Since the sets of predicted word forms are always ordered in the same way,
I can simply refer to their members via indices. The second member p2 of
the set P returned by GEN(dick<Adj+e>) is always “dicke”. This justifies

11

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

referring to “dicke” simply by stating GEN(dick<Adj+e>)2. Example 2.6
shows the results of applying this technique to every wn ∈W from Example
2.2.

(2.6) GEN(dick<Adj+e>)2, GEN(dünn<Adj+e>)3,
GEN(Kompressor<NMasc_s_en>)1,
GEN(Navigator<NMasc_s_en>)1, GEN(Navigator<NFem_0_s>)2,
GEN(reparier<VVReg>)7

This way of encoding word forms exposes redundancies on several well
defined levels which can be reduced. As already mentioned, a hypothesis h
has a stem part (s) and a class part (c). So for instance, although there are 6
different word forms in W (Example 2.2), only 5 different stems are needed
to encode them (“Navigator” occurring twice). In Example 2.6, only 4 dif-
ferent classes are observed (<Nmasc_s_en> and <Adj+e> occuring twice each).

If I now replace every occurrence of any ubiquitous element (of what-
ever kind) with a shorter pointer to a single instance of this element, I have
successfully achieved some compression of the data. To generate suitable
pointers from a set of elements, I can make use of the Huffman coding al-
gorithm that to each element assigns a pointer of a length close3 to the
negative base 2 logarithm of the elements relative frequency (in the set of all
elements). The latter is called the weight of the element.

I am going to encode each wn in terms of cnk, snk and i so each is going
to be compressible. The model for encoding word forms will be structured
like this:

• globally, stems (s) are stored in a Huffman tree according to/weighted
by the relative frequency with which each is used for explaining a corpus
word form.

• class structures are stored in a Huffman tree according to/weighted by
the relative frequency with which each is used for explaining a corpus
word form.

• a class structure c consists of an internal Huffman tree, storing the
(global) code of each stem (plus a Huffman tree for indices, see below)
that appears in conjunction with the class, weighted by the relative
frequency the stem and the class are used for explaining a corpus word

3For reasons of simplicity, we will use this approximation for all applicable future
purposes.

12

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

form (which can obviously be different from the weighting of the global
tree).

What remains to be encoded to compress the corpus is the index i select-
ing the one word form pi ∈ Pxk that is equal to the wx that is intended to be
described by the current hypothesis hxk. This is entered into the Huffman
tree simply by using fx as weight. Such a tree is created and stored with
each stem sx inside a class structure.

Huffman codes can simply be concatenated due to the fact that a com-
plete code for one entry can not simultaneously be an incomplete code for
another entry. Hence all potential boundaries are always clear-cut and a
word form wn can be encoded by the Huffman code for the class cnk followed
by the class-internal code for snk in turn followed by the stem-specific code
for index i.

In reverse, to determine the encoded word, a code sequence can be pro-
cessed bit by bit until an entry c is found in the Huffman tree for class
structures. From the next bit on, the Huffman tree for stems inside the
found class is crawled until a stem s is found. The final bits are used with
the tree stored with the stem to look up the index i of the intended word
form in the results generated by the GEN function, which is called with the
concatenation h of class c and stem t: w = GEN(h)i = GEN(c ◦ s)i.

2.2.3 Storing the Corpus

Every single word in the corpus can be replaced with a code sequence fol-
lowing this pattern, shrinking the compression size at the cost of introducing
complexity into the generating model.

2.2.4 Storing the Model

Having compressed the corpus by introducing a lot of complexity into the
model I now have to deal with storing the model in a minimal manner. In
particular, I need to discuss storing

1. strings of characters (words)4

2. Huffman trees / lookup tables

3. a finite state morphology
4See Section 2.3

13

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

efficiently. The last point from this list is not only beyond the scope of
this work but can also be safely disregarded due to the fact that the HY P

and GEN functions representing the morphology remain unchanged between
different models. The same is obviously true for the algorithms used for con-
structing (and working with) the computational equivalents of strings, tables
or trees from their respective minimal representations which I am going to
discuss next.

For reasons of simplicity the space complexity of Huffman trees is con-
sidered to be proportional to that of an equivalent lookup table. Due to the
mentioned deterministic nature of a Huffman code, a simple list structure is
sufficient. (i.e. it is not necessary to distinguish between key and value field.)
To simplify further, every entry of such a list is prefixed by its bit length.
The length of the binary coding of the longest entry bit length is stored at
the beginning of the list in a constant number of bits. The bit length prefix
for every list entry is of this predefined size. The first part after the prefix is
the Huffman code. In case of a mismatch, the lookup algorithm would skip
ahead in the bit stream by the amount defined by the prefix (minus the bits
parsed beyond the prefix) to get to the next entry. The bit length of such
a lookup table would be the prefix bit length times the number of entries
(Huffman code plus node content) plus the sum of the bit lengths of all en-
tries plus the constant at the beginning of the list denoting the prefix size.5

Given similarly sized entries the list size grows proportional to its length.

My model consists of

1. a Huffman coded list of stems,

2. a Huffman coded list of morphological continuation classes,

3. a (constant) finite state morphology,

where I ignore the last part as already mentioned. The Huffman coding of
stems is done the way it was described above. The coding of morphological
continuation classes is a bit more involved as each node contains a Huffman
coded list of data structures consisting of stem plus another Huffman coded
list of indices for the desired GEN interpretations.

2.2.5 Summary

In this section, I have tried to provide a sound and solid theoretical founda-
tion for an à posteriori corpus compression by means of exploiting an existing

5See Section 2.3 below for an example

14

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

morphological model (i.e. set of morphological facts). Although I have now
identified the required steps to compress the corpus in some detail, I will not
bother with actually implementing them. For the purposes of this work, it
is merely sufficient to know the would be compression size of the corpus for
any given model. Hence, I will later on be able to make do with reasonable
abstractions for space complexities of the algorithms I am incorporating in
my theoretical considerations.

2.3 Practical Considerations

As already mentioned, I do not strive to for an actual maximal corpus com-
pression, but for the particular set of morphological hypotheses that would
make such a compression maximal. The whole purpose of calculating the
code length of a corpus compression is the comparison with the code length
of a compression that incorporates a slightly different morphological map-
ping.

This allows me to apply a set of abstractions, alterations and approxima-
tions to the above described methods in order to reduce their computational
(and implementational) complexity.

2.3.1 Approximations

Although the code length for strings in the model could be based on the
frequency-weighted Huffman codes of their characters, a reasonable approx-
imation (according to [Goldsmith, 2004]) can be made by assuming equal
probability for all characters and simply use the product of the resulting
character code length and the length of the string. In this case, a string’s bit
length is roughly equivalent to (n+ 1) · log2(|Σ|+ 1) where |Σ| is the number
of characters in the alphabet and n the number of characters in the string.
Adding 1 to n and |Σ| respectively pays duty to the special string stop symbol
which is outside of the alphabet. For the German alphabet with 3 additional
umlauts plus the ligature “ß” and the stop symbol, log2(31) approaches 5,6

which is therefore used forthwith as the approximate code length for any
alphabetic character.7

6Captalization is left out of consideration in this approach.
7My implementation can optionally use accurate string code lengths based on Huffman

code lengths of characters instead of this approximation.

15

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

2.3.2 Simplifying Assumptions and Abstractions

A major potential for simplification is the above stated fact that I only com-
pare code lengths between compressions. Additionally, only the fact that one
compression is either shorter than, equal to or longer than another is going
to be considered. This enables me to introduce simplifications that keep the
simplified code length merely proportional to the original one. Also, any
invariant parts such as static data structure overhead of the actual compres-
sion can be left out. I already briefly argued the case for leaving the code
length of the morphological hypothesizer out of even the detailed, theoretical
compression, and the same applies here. In the following an overview over
most of the simplifications is given.

Disregarding Closed Class and Irregular Words

Irregular words by definition form exceptions from the common morpholog-
ical rules8 and as such form a finite set of words together with the closed
class function words. These words can be assumed to be simply enumerated
in a static part, either of the morphological hypothesizer or the compression
itself. As such, they can be saveloy disregarded from the simplified code
length calculation.

Huffman Tree and Simple List Code Lengths

The theoretical code length of a crude simple list data structure capable
of representing Huffman trees was previously examined. It was observed
that a code length of a simple list is largely proportional to the number n

of its entries [E1, E2, ..., En] plus the code lengths of the entries themselves
(
∑n

i=1 |Ei|) plus some constant overhead c (for e.g. data structure contain-
ment). For each entry, a constant overhead of length l is required to encode
its length. These constants need to be in N\{0} to influence the outcome of
comparisons between list lengths in the desired manner.

Word Interpretation

A given word form (although possibly occurring at different places all over
the corpus) is assumed to only one correct morphological interpretation, i.e.
to always be of the same inflectional class. Although there are certainly
examples for conflicting classes for the same word form,9 their infrequent

8Although their morphology might well adhere to a more complex set of rules, this
possibility is not explored here.

9There is for instance the German noun “Leiter” which in feminine form translates to
“ladder” and in masculine form means “leader”. Other examples include “See” and “Tau”.

16

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

occurrence does not justify the amount of additional work necessary to in-
corporate this kind of exception into the compression model.

Subset of Corpus

As will become clear in the next section, I dealing with subsets of the corpus
significantly reduces training runtime. We are only dealing with continuation
classes that should not have any influence on the first letters of any predicted
word forms. This justifies the assumption that updates on the model (i.e.,
identifying a better hypothesis for a given word form) can only significantly
influence the corpus or model-compression properties of related word forms.
Restricting the corpus to a subset of (e.g.) word forms that all begin with
the same letter can be expected to leave these kinds of interactions largely
intact while at the same time prevents combinatorial explosions that lead to
intolerable training runtimes.

2.4 Methodology

The modified SMOR morphology is applied to every word form in the (fil-
tered) corpus in order to obtain a hypothesis for the stem and associated
continuation class producing the respective word form. Of the usually mul-
tiple hypotheses which the morphology (i.e. the implementation of the HY P

function) produces for a single word form, (only) one is selected, while the
remainder is kept in memory as possible future alternatives to the currently
chosen hypothesis. If the continuation class of the selected hypothesis has
not been entered into the model before now, it is then used to create a new
class structure (or just class), wherein (a pointer to) its associated stem is
entered. If a class structure for the given continuation class had already ex-
isted, the whole process would have been reduced to simply adding the stem
to the class structure. The word form causing this creation/modification of
a class structure is entered along with its corpus frequency into a temporary
list which is associated with its stem entry in the class structure.

After the first pass, when all class structures have been created and en-
tered into the model, the GEN function (i.e. the SMOR morphology in
reverse) is applied to every stem and continuation class of each class struc-
ture, generating all word forms their combination potentially describes. This
resulting list of potential word forms is searched for the actual observed word
forms from the corpus to determine their indices therein. This is done in
order to be able to replace every word form in the corpus with a matching
compressed coding for its stem and continuation class plus index.

17

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

2.4.1 Procedure

The raw text from the German TIGER corpus is sieved for open-class words
using the morphisto “gold standard” reference morphology. Only verbs, com-
mon nouns and adjectives were kept, although a less restrictive selection pro-
cedure could be easily implemented. In the following, this subset of tokens
from the TIGER corpus will just be referred to as the corpus.

A simple inflectional morphology is then used to generate a set of hy-
potheses for the correct morphological analysis for each token in the corpus.
A hypothesis is here treated as consisting of two parts:

1. the stem of the word (will be referred to as stem further on)

2. one or more tags with morphological information (will be referred to
as tag string further on)

I want to determine which hypothesis is the right one for a given word.

It should be noted that the approach used here is substantially different
than the one used by [Goldsmith, 2001]. Goldsmith bootstrapped a mor-
phology concentrating on suffixation with categorization as a welcome side
effect. In contrast, this work concentrates on the correct selection of the
best hypothesis for a given word, namely that which successfully describes
the word while only minimally extending the combined length of compressed
model and corpus. While the internal structure of the model is heavily in-
fluenced by Goldsmith’s work, the mathematical considerations had to be
made largely independent from his.

Algorithmic Work Flow

1. Decide which word classes the model should be able to describe
(Example: Nouns, Verbs, Adjectives)

2. Take a corpus and apply the evaluation morphology to each token.
Only keep those tokens which have an analysis that the HY P function
is also able to produce. (e.g. throw away all closed-class stop words.)
100% accuracy will be achieved, if the model produces the same anal-
ysis as the gold-standard morphology for each word.

3. For each of these (remaining) tokens, generate hypotheses using the
HY P function. Randomly choose one of these hypotheses and enter it
into the model. The model is now randomly initialized.

18

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

4. Calculate the compression length of this random model and the length
of the corpus encoding.

5. For each token in the corpus (taken from a randomized list of all tokens)
(alternatively: For each random token from the corpus)

(a) remove its currently associated hypothesis from the model

(b) select a different hypothesis, enter it into the model and recalcu-
late the size of the compression

(c) if the description length improved, the corresponding hypothesis
replaces the previous one

(d) repeat until all possible hypotheses for a given token have been
analysed for improvement of the description length

(e) enter the so determined “best” hypothesis into the model

6. Repeat this process until no further improvement of the model is
achieved (over a certain number of iterations).

2.4.2 System Features

The system I implemented has a range of parameters that can be tuned.

2.4.3 Dynamic Programming

So far, the process of compression minimization has not been discussed,
although this approach heavily relies on the effectiveness and speed of alter-
native hypothesis testing. It is inconceivable to completely recalculate the
compression size for every change that is done to the model. Consequently,
some dynamic-programming techniques have been identified that reduce the
computational complexity somewhat.

Huffman Trees

Since I use the concept of a Huffman tree only to have a plausible measure
of code lengths, I can replace its implementation by a simple algorithm that
approximates its theoretical bit length based on the elements that would
be stored in it. The size of the prefix codes in a Huffman tree is gener-
ally close to optimal entropy encoding and, although there are exceptions,
I use the information content (in bits) given by − log2(P (x)) (as defined
by [Shannon, 1948]) as a measure to approximate the code length of each
element stored in the tree.

19

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

Calculating (or approximating) the bit length of the entire Huffman tree
is, unfortunately, hard without addressing the task numerically. One has to
calculate the information content for each element in the tree (and add the
bit lengths of the stored elements themselves) in order to create a combined
bit length which approximates the size of the tree. Whenever an element is
added to or removed from the tree, the information content usually changes
for most of the stored elements, essentially forcing a complete recalculation
of the bit lengths.

Perhaps conveniently, the worst case code length for any element in a
Huffman tree with n entries is given by log2(n), which allows for the compu-
tation of the combined bit length of all the prefix codes in the tree without
the need to iterate over every node. Here, adding a new entry to a tree is a
simple matter of adding 1 to the overall number of elements n and adding
the bit length of the entry to the accumulated sum of all bit lengths. Corre-
spondingly, removing of elements from the tree does the reverse. While this
approach has a number of issues with the applicability of the general theory,
it was nevertheless evaluated along with the previous, computationally more
expensive but also theoretically more justified approach above.

For both approaches, I have to allow adding elements to the tree that are
already present. This is needed for cases wherever the probability mass of an
entry gets increased in the model. This does not change the overall number
of elements but decreases the Shannon entropy (and thereby the code length)
of the entry in question. Conversely, the reduction of probability mass for
an entry is also accounted for.

While these techniques in themselves are not considered to be cases of
“dynamic programming”, they are essential in facilitating the quick computa-
tion of the overall bit length of a tree, including that of the elements stored in
it. Both approaches rely on accumulatively storing the sum of the individual
bit lengths of elements as they are entered into the tree. When computing
the bit length of the tree, this figure is simply added to the combined code
lengths and to the previously mentioned overhead of the list structure that
stores the tree.

Updating the Model

Updating the model is mainly done by adding or removing hypotheses, which
translates to adding or removing elements from the underlying Huffman
trees, which can be computationally cheap in case the above mentioned
“worst-case approximation” is used.

20

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

Updating the Compression

There is no apparent way to approximate the size of the resulting corpus
compression by any means that are faster than summing over the model-
based bit lengths of all word forms in the corpus.

2.5 Results

As has been argued in Section 2.3.2, it is permissible to reduce the corpus
to a subset that is expected to largely capture interrelated word forms. For
all of the following results, training was done on a subset of the corpus cap-
turing all word forms beginning with the letter “S” (both upper and lower
case). When the TIGER corpus is sieved for those word forms that appear
in the gold-standard lexicon, 1176 unique word forms are left to train on.

The system choses a pseudo-random “update candidate” from all alter-
natives for every single iteration. Each iteration takes about 0.18 seconds to
compute, resulting in a processing time of 30-40 minutes10 for each of the
following plots.

To determine the theoretical upper bound of accuracy for the system,
some training runs were performed on models that had been initialized with
the correct mappings according to the gold-standard lexicon. Results can be
seen in Figures 2.2 and 2.4.

Two different approaches for Huffman-tree length-calculation were tested.
The more accurate but computationally more complex version was used for
Figures 2.1 and 2.2. Figures 2.3 and 2.4 show the simpler solution based
on the trivial worst-case approximation. Contrary to expectations, no sig-
nificant differences in overall run times were observed. The pseudo-random
number generator used is deterministic over invocations allowing compar-
isons such as Figure 2.5 or 2.6.

Figures 2.7 and 2.8 each explore a naïve “one-level” approach, just min-
imizing either the corpus compression or the model compression, while still
tracking the “would be” compression size of the “other part” respectively.
The final Figure 2.9 compares the compression size relations between the
minimized and the complementary level for both runs.

Note that these results will only be discussed in Chapter 4

10Measured on a 2.4 GHz x86_64 CPU with native 64 bit operating system.

21

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

 180000

 185000

 190000

 195000

 200000

 205000

 210000

 215000

 220000

 0 2000 4000 6000 8000 10000 12000 14000
 15

 20

 25

 30

 35

 40

 45

C
o
m

p
re

s
s
io

n
 S

iz
e

 i
n

 B
it
s

A
c
c
u

ra
c
y
 i
n

 %

Number of Random Model Updates

Compression
Accuracy

Figure 2.1: Model training run (until termination) using (slow) accurate
Huffman-tree length-calculation. Plot shows compression bit-length versus
gold-standard accuracy for randomly initialized model

 179000

 179100

 179200

 179300

 179400

 179500

 179600

 179700

 179800

 179900

 0 2000 4000 6000 8000 10000 12000
 85

 90

 95

 100

C
o
m

p
re

s
s
io

n
 S

iz
e
 i
n

 B
it
s

A
c
c
u
ra

c
y
 i
n
 %

Number of Random Model Updates

Compression
Accuracy

Figure 2.2: Model training run (until termination) using (slow) accurate
Huffman-tree length-calculation. Plot shows compression bit-length versus
gold-standard accuracy for gold standard initialized model

22

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

 180000

 185000

 190000

 195000

 200000

 205000

 210000

 215000

 0 2000 4000 6000 8000 10000 12000
 15

 20

 25

 30

 35

 40

 45

C
o
m

p
re

s
s
io

n
 S

iz
e

 i
n

 B
it
s

A
c
c
u

ra
c
y
 i
n

 %

Number of Random Model Updates

Compression
Accuracy

Figure 2.3: Model training run (until termination) using (fast) worst-case
Huffman-tree length-calculation. Plot shows compression bit-length versus
gold-standard accuracy for randomly initialized model

 177500

 177550

 177600

 177650

 177700

 177750

 177800

 177850

 177900

 177950

 178000

 0 2000 4000 6000 8000 10000
 85

 90

 95

 100

C
o
m

p
re

s
s
io

n
 S

iz
e
 i
n

 B
it
s

A
c
c
u
ra

c
y
 i
n
 %

Number of Random Model Updates

Compression
Accuracy

Figure 2.4: Model training run (until termination) using (fast) worst-case
Huffman-tree length-calculation. Plot shows compression bit-length versus
gold-standard accuracy for gold standard initialized model

23

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 134000 136000 138000 140000 142000 144000

M
o

d
e
l
B

it
 L

e
n
g

th

Corpus Bit Length

fast approach
accurate approach

Figure 2.5: Corpus-compression size versus model-compression size for both
accurate and fast approach to Huffman-tree size-approximation for randomly
initialized models

 180000

 185000

 190000

 195000

 200000

 205000

 210000

 215000

 220000

 0 2000 4000 6000 8000 10000
 15

 20

 25

 30

 35

 40

 45

C
o
m

p
re

s
s
io

n
 S

iz
e

 i
n
 B

it
s

A
c
c
u
ra

c
y
 i
n
 %

Number of Random Model Updates

Compression (accurate approach)
Accuracy (accurate approach)
Compression (fast approach)

Accuracy (fast approach)

Figure 2.6: Comparison of model training runs using both approaches to
Huffman-tree length-approximation. Plot shows compression bit-length ver-
sus gold-standard accuracy for randomly initialized model

24

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

 134000

 135000

 136000

 137000

 138000

 139000

 140000

 141000

 142000

 143000

 144000

 0 2000 4000 6000 8000 10000
 15

 20

 25

 30

 35

C
o
rp

u
s
 C

o
m

p
re

s
s
io

n
 S

iz
e
 i
n

 B
it
s

A
c
c
u
ra

c
y
 i
n
 %

Number of Random Model Updates

Compression
Accuracy

Figure 2.7: Naïve approach that minimizes only corpus compression for ac-
curate Huffman-tree length-calculation and gold standard initialized model.

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 0 2000 4000 6000 8000 10000 12000 14000
 15

 20

 25

 30

 35

 40

M
o
d
e
l
C

o
m

p
re

s
s
io

n
 S

iz
e
 i
n
 B

it
s

A
c
c
u
ra

c
y
 i
n
 %

Number of Random Model Updates

Compression
Accuracy

Figure 2.8: Naïve approach that minimizes only model compression for ac-
curate Huffman-tree length-calculation and gold standard initialized model.

25

CHAPTER 2. UNSUPERVISED MAXIMIZATION OF CORPUS
COMPRESSION

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 134000 136000 138000 140000 142000 144000

M
o
d
e
l
B

it
 L

e
n
g

th

Corpus Bit Length

Just Minimizing Model
Just Minimizing Corpus

Figure 2.9: Comparison compression-size levels between both naïve ap-
proaches.

26

Chapter 3

The Web-Search-Hits
Approach

One of the uses of the Minimum Description Length (MDL) approach as de-
tailed above is to help with the categorization of any unknown word from a
text into its correct morphological class by means of entering each potential
hypothesis into the model and selecting that which makes the model grow
least.
This very same task can also be approached from an entirely different per-
spective.

3.1 Introduction

Web search-engines such as Google or Yahoo! Search create and maintain
indices of a major part of the natural language content on the World Wide
Web ([Gulli and Signorini, 2005]). Performing a web search on a word (or
term) by dispatching a query (containing the word) to one of those search
engines typically takes a fraction of a second. As a result, part of the (ranked)
list of URLs to web sites (and matching excerpts of their content) that match
the query in some way is provided, usually along with some meta data.
Among this meta data, search engines usually also provide a measure called
“number of hits” (NoH), the (estimated) number of all (indexed) web sites
that match the query. Faced with two competing concepts, dispatching a
query on each to compare the NoH to support or discredit one has reportedly
been used even in scientific disputes ([Kilgarriff, 2007]). In this chapter, I
examine the applicability of NoH measures (as returned by popular search
engines) in response to a set of automatically generated queries to determine
the correct morphological interpretation of an unknown word form.

It must be mentioned that the methodology presented here is by no means

27

CHAPTER 3. THE WEB-SEARCH-HITS APPROACH

uncontrovercial. [Kilgarriff, 2007] objects to the usage of the NoH measure
as a scientific resource in general, although part of his argument is rendered
moot by the introduction of new APIs by the major search engines that do
not impose the criticized restrictions on the number of queries per day. His
criticism of the closed and commercial nature of the popular search engines
however is also highly relevant to this work.1

I compare the accuracy of this approach for the analysing unknown word
forms encountered in a raw2 German corpus using Microsoft Bing (called
“Bing” in the following), Yahoo! Search (called “Yahoo” in the following) and
Google (as of 2009 the three most popular search engines). I also discuss
some legal aspects of this usage of search engines in Appendix B.

3.2 Approach

For an observed word, a morphological hypothesizer generates hypotheses
about the underlying word stem and inflectional class, for which the ob-
served word is one of the possible forms derivable from the hypothesized
stem and inflectional paradigm. The hypothesis is a correct morphological
explanation of the observed word if and only if every other word form that
the hypothesis allows is also valid in the language. A low NoH when querying
search engines for any of these “predicted” word forms discredits the corre-
sponding hypotheses.

The same morphological analyzer (called “morphology” in the following)
as described previously is used on an unknown word to generate morpholog-
ical hypotheses that are applied to the reverse of the analyzer to generate
the set of word forms “predicted” by each hypothesis. These predicted word
forms are then processed into search engine queries. By comparing the re-
turned NoHs associated with each hypothesis, one expects to find the correct
one with reasonable accuracy, since non-correct hypotheses are expected to
predict (or “describe”) non-existing word forms for which the NoH is expected
to be generally low. As a crude heuristic, a low or zero NoH for just one
word form would strongly discredit the hypothesis, while a constantly high
NoH among all its predicted word forms would support it.

Traditionally, search engines perform character/string matching between
query and website content to determine its relevance ([Brin and Page, 1998]).
As a logical consequence of this, typographical errors in a query lead to a

1See Appendix B
2While annotations exist for the corpus, no use is made of them.

28

CHAPTER 3. THE WEB-SEARCH-HITS APPROACH

much smaller result set, mainly consisting of pages where the same error was
made. While the result set can contain results based on informed automated
guesses, it is possible to enforce the exact matching of the query to the con-
tent of the returned websites by placing quotation marks around the query
([Long et al., 2004]). This behaviour is preferred, because many queries can
be expected to be “near misses” (i.e. by missing a single character) to the
correct form and I do not want any search engine heuristics to influence the
NoH.

3.2.1 Dealing with Word Form Ambiguity

Although incorrect hypotheses often predict word forms that are illegal in
the language and thus have a very low (or zero) NoH, two hypotheses could
also predict the same set of word forms (see Example 3.1 below) while differ-
ent grammatical features for the word forms are implied by their respective
morphological classes.

(3.1) Schere<NMasc_n_n> describes: “Schere”, “Scheren”, implies male
gender
Schere<NFem_0_n> describes: “Schere”, “Scheren”, implies female
gender

It is therefore desirable to somehow disambiguate between such predicted
word forms. This can be most easily addressed in case of nouns, where ap-
plicable definite articles differ widely with the grammatical features (gender,
case and number) of a noun. Definite articles could resolve the ambiguity in
Example 3.1 by making the gender explicit:

(3.2) Schere<NMasc_n_n> describes: “der Schere”, “des Scheren”, “den
Scheren”, “der Scheren”, “die Scheren”, “dem Scheren”
Schere<NFem_0_n> describes: “die Schere”, “der Schere”, “der
Scheren”, “die Scheren”, “den Scheren”

Although there still is some overlap in Example 3.2, “des Scheren” and
“dem Scheren” are unique to Schere<NMasc_n_n> and “die Schere” is unique
to Schere<NFem_0_n>. The NoH is 1170 for “des Scheren” and 18900 for “die
Schere”.3

3The NoH for “dem Scheren” is admittedly highest with 20300, but this is due to the
fact that “Scheren” is ambiguous in the German language and can either mean “scissors” or
“the act of shearing” and the discussion of the latter on the Internet seems to be popular
with pet owners.

29

CHAPTER 3. THE WEB-SEARCH-HITS APPROACH

Nouns are easy to disambiguate this way, which is one of the reasons
why I decided to restrict myself to just evaluating those in this approach.
The disambiguation of verbs in a similar manner would be a more complex
task, since word forms can differ with respect to features such as tense or
grammatical mode, requiring the development of a range of more complex
query constructs in order to disambiguate the individual forms properly.

3.3 Procedure and Implementational Details

3.3.1 Corpus and Gold Standard

The TIGER treebank corpus is used as a source for raw text tokens. Al-
though originally chosen for its rich annotation data, no use is made of these.
In effect, any other source of tokenized raw text should work with the system.

The “morphisto” morphological analyzer4 for the most common Ger-
man words provides a lexicon file with close to 20000 entries that lists
the stem and associated continuation class for each of these words (see
[Zielinski and Simon, 2008]). Although the line format differs from that of
the system-generated hypotheses, class tags follow convention in both sys-
tems and can be matched. Stems can be extracted from the lexicon by means
of regular expressions and can also be matched.

For evaluation purposes, the set of corpus word forms to be analyzed by
the system can optionally be restricted to those that are in the gold-standard
lexicon. This still requires processing of and hypothesizing over the whole
set of word forms to determine if the hypothesis set for each form contains a
member that is matchable to an entry in the lexicon. Only if this is not the
case, the word form is removed from consideration.

3.3.2 Morphology Modification

The morphology that I base my work upon was never intended for the here
described application and therefore does not return the grammatical features
that are essential to perform article attachment as seen in Example 3.2. The
raw word forms are occasionally also returned in inconsistent order which
prevents the post processing of the output by automatically assigning fea-
tures to different places of the returned list. I therefore opted for attempting
an extension of the morphology to return the desired grammatical features
along with the word forms.

4built on the same finite state technology as the hypothesizer used here

30

CHAPTER 3. THE WEB-SEARCH-HITS APPROACH

Although the morphology uses grammatical features internally to gener-
ate the word forms, I was not able to modify it into passing them through
the output. I however found a slightly non-elegant, special solution that
only required the removal of 5 characters in the definition of one transducer
that upon analysis of a word form would return the matching stems and
inflectional classes along with the grammatical features of the analysed word
form (see Example 3.6 below). So in order to obtain the features which a
certain hypothesis assigns to its potential word forms, I would analyse this
word form using the hacked version of the morphology and select the features
from the result set that are attached to the original hypothesis.

As an example, consider the last word (“Schafen”) from Example 3.3, the
(unmodified) morphology produces a certain set of hypotheses.

(3.3) “Es gibt Scheren zum Scheren von Schafen”

Example 3.4 shows an excerpt from the set of all hypotheses appli-
cable to the word form “Schafen”, among which is also the correct one
(Schaf<NNeut_es_e>).

(3.4) ...

Schafen<NMasc_s_x>

Schafen<NNeut_es_en>

Schafe<NFem_0_n>

Schafe<NNeut_s_0>

Schafe<NNeut_s_n>

Schafe<NMasc_s_0>

Schafe<NMasc_n_n>

Schafe<NMasc_s_n>

Schaf<NMasc_es_e>

Schaf<NNeut_es_e>

Schaf<NMasc_s_en>

Schaf<NMasc_es_en>

Schaf<NFem_0_en>

Schaf<NMasc_en_en>

Schaf<NNeut_es_en>

...

Each of these hypotheses can describe a number of word forms. Using
the (unmodified) morphology in reverse, one can generate all the word forms
a certain hypothesis “predicts” or “describes”:

(3.5) Schaf<NNeut_es_e> describes: “Schaf”, “Schafe”, “Schafen”, “Schafes”,
“Schafs”

31

CHAPTER 3. THE WEB-SEARCH-HITS APPROACH

It is now desirable to determine the matching article for each of these
word forms. Due to the fact that the morphology is not guaranteed to return
an ordered set of results, I chose the option of obtaining the morphological
features for each word form instead. I apply the modified morphology to
each of these predicted word forms. (Part of) the results of applying it to
“Schafe” can be observed in Example 3.6.

(3.6) ...

Schafe<NMasc_n_n><+NN><Masc><Nom><Sg>

Schafe<NMasc_s_n><+NN><Masc><Dat><Sg>

Schafe<NMasc_s_n><+NN><Masc><Nom><Sg>

Schafe<NMasc_s_n><+NN><Masc><Acc><Sg>

Schaf<NMasc_es_e><+NN><Masc><Nom><Pl>

Schaf<NMasc_es_e><+NN><Masc><Acc><Pl>

Schaf<NMasc_es_e><+NN><Masc><Gen><Pl>

Schaf<NNeut_es_e><+NN><Neut><Nom><Pl>

Schaf<NNeut_es_e><+NN><Neut><Acc><Pl>

Schaf<NNeut_es_e><+NN><Neut><Gen><Pl>

...

Any line of the result set that does not match the hypothesis we are
currently investigating (Schaf<NNeut_es_e>) is discarded, leaving Example
3.7.

(3.7) Schaf<NNeut_es_e><+NN><Neut><Nom><Pl>

Schaf<NNeut_es_e><+NN><Neut><Acc><Pl>

Schaf<NNeut_es_e><+NN><Neut><Gen><Pl>

The hypothesis part of these results is simply discarded leaving Example
3.8

(3.8) <+NN><Neut><Nom><Pl>

<+NN><Neut><Acc><Pl>

<+NN><Neut><Gen><Pl>

This tells us that for Schaf<NNeut_es_e>, “Schafe” is the single plural
inflection of “Schaf” used in case of5 nominative, genitive and accusative.
It is trivial to construct a query from this using a mapping of features to
articles as is hard coded in Example 3.1.

-- defines a mapping between grammatical
-- features and (definite) articles
local mapping = {

5Pun intended.

32

CHAPTER 3. THE WEB-SEARCH-HITS APPROACH

["<+NN ><Neut ><Nom ><Sg>"]="das",
["<+NN ><Neut ><Gen ><Sg>"]="des",
["<+NN ><Neut ><Dat ><Sg>"]="dem",
["<+NN ><Neut ><Acc ><Sg>"]="das",
["<+NN ><Neut ><Nom ><Pl>"]="die",
["<+NN ><Neut ><Gen ><Pl>"]="der",
["<+NN ><Neut ><Dat ><Pl>"]="den",
["<+NN ><Neut ><Acc ><Pl>"]="die",
["<+NN ><Masc ><Nom ><Sg>"]="der",
["<+NN ><Masc ><Gen ><Sg>"]="des",
["<+NN ><Masc ><Dat ><Sg>"]="dem",
["<+NN ><Masc ><Acc ><Sg>"]="den",
["<+NN ><Masc ><Nom ><Pl>"]="die",
["<+NN ><Masc ><Gen ><Pl>"]="der",
["<+NN ><Masc ><Dat ><Pl>"]="den",
["<+NN ><Masc ><Acc ><Pl>"]="die",
["<+NN ><Fem ><Nom ><Sg>"]="die",
["<+NN ><Fem ><Gen ><Sg>"]="der",
["<+NN ><Fem ><Dat ><Sg>"]="der",
["<+NN ><Fem ><Acc ><Sg>"]="die",
["<+NN ><Fem ><Nom ><Pl>"]="die",
["<+NN ><Fem ><Gen ><Pl>"]="der",
["<+NN ><Fem ><Dat ><Pl>"]="den",
["<+NN ><Fem ><Acc ><Pl>"]="die",

};

Listing 3.1: Code excerpt from diligentweb.lua, mapping grammatical
features to articles

The result of applying this mapping to the word form “Schafe” can be
seen in Example 3.9 below.

(3.9) “die Schafe”, “der Schafe”6

This procedure is repeated for the other word forms in Example 3.3 to
eventually build a query for each.

3.3.3 Accessing Search Engines

Yahoo, Google and Bing each provide RESTful APIs to not only access
their search services from resources other than a web browser but optionally
also obtain the results as a JSON data structure (as opposed to an HTML
formatted document). JSON is simple to parse and its usage reduces network
overhead over HTML or XML due to dense encoding of content in a compact
tree structure.

6The system removes duplicate elements.

33

CHAPTER 3. THE WEB-SEARCH-HITS APPROACH

All search engine providers offer unlimited access to their search engine,
but require (or in case of Google “encourage”) that the “application” identifies
itself using a registered ID. Such an (application) ID (or “key”) is obtained
through an registering process that (while requiring a textual description of
the service one intends to implement) is most likely completely automated
on the side of the providers.7

Yahoo offers access to their search engine without hard limits for users of
its soon-to-be-commercial8 BOSS 9 service ([Yahoo Inc., 2009b], [Tran, 2008]).
As of the time of this writing, usage of the API is still free of charge for devel-
opers and no information has been available about the time of termination
of this circumstance.

Upon re-branding their “Live Search” product as “Bing” and releasing a
new API, Microsoft removed all previous restrictions on query quota
([Manoochehri, 2009]).

Google does not enforce access limits on its “AJAX Search API”. In pre-
vious, more experimental APIs, Google enforced a quota of 1000 queries per
day and application ID (or “key”), a measure that was necessary due to lim-
ited the resources ([Google Inc., 2009b]). Google is the only provider to not
require authentication via an application ID, but also stands out by requir-
ing an HTTP referrer URL of an existing site for all API accesses. For this
purpose, I created a simple web page where I briefly explaining this project
and used this as a referrer. This requirement forced me to use the Unix
command curl (a case which is even described in the API documentation)
in place of the more primitive native Lua HTTP client library.

3.3.4 Result Collection

The previously identified overlap of predicted word forms between differ-
ent hyptheses combined with the possibility that two ostensibly different
observed words could be different inflections of the same root was initially
expected to lead to a certain amount of redundancy between queries. It was
therefore decided to cache the NoH for each query in order to save network
bandwidth and (due to the greater latency of querying compared to cache

7Confirmation emails of successful registration were typically received mere seconds
after completing the web form.

8Yahoo! Inc. is currently planning a fee structure for the BOSS API based on the
number of search results requested. In the use case presented here, no actual results are
needed (and it is indeed possible to request a result set of size 0), which is however not
accounted for in the planned billing scheme ([Yahoo Inc., 2009a]). The question if this
poses any issues for the accounting system should be subject of future investigation.

9Build your Own Search System

34

CHAPTER 3. THE WEB-SEARCH-HITS APPROACH

access) time. The cache maps query strings to the returned NoH. For added
reliability, the cache primarily resides in a data structure that is held in
persistent memory, thereby protecting it from program failures. This facil-
itates modifications and improvements to the system without the need for
rebuilding the cache each time.

3.3.5 Result Analysis via Simple Heuristic

For a given word form the set of corresponding hypotheses needs to be boiled
down until only one hypothesis remains. In order to achieve this, each hy-
pothesis is ranked according to how many of the word forms it predicts
achieve the highest NoH in their category. (e.g. no other hypothesis has a
higher NoH count for the (e.g.) nominative singular word form.) In case
this ranking results in a tie for two or more hypotheses, this is resolved by
summing the NoHs for each hypothesis and comparing these. A special rule
exists in case a hypothesis has a NoH of zero for one or more of its predicted
word forms. In this case, the offending hypothesis is also ranked with zero,
usually putting it at the bottom of the heap.10

After ranking them in this way, either an ordered list of hypotheses or the
single most likely one is returned.

3.4 Results

The nouns hypothesized upon divide into the genders as listed in Table 3.1.

masculine nouns 3336
feminine nouns 2697
neuter nouns 1309

total 7342

Table 3.1: Numbers of Nouns, Ordered by Gender

Four different accuracy measures were applied to the results produced by
each search engine.

3.4.1 Remarks on Search Engine Performance

Query response time was slowest for Yahoo, with Bing being marginally
faster and Google between two and three times as fast as Yahoo.

10For reasons of system robustness, the hypothesis is not simply removed.

35

CHAPTER 3. THE WEB-SEARCH-HITS APPROACH

Percentage of Results Bing Yahoo Google
agreeing with gold standard on masculine gender 57% 65% 73%
agreeing with gold standard on feminine gender 63% 71% 82%
agreeing with gold standard on neuter gender 53% 72% 78%

average agreement with gold standard so far 59% 69% 78%

agreeing with the gold standard on everything 42% 55% 61%

Table 3.2: Accuracy Percentages for each Search Engine

A rough estimate of response times credits Google with five queries per
second, Bing with three and Yahoo with two.

Quality of Service (QoS) was worst for Bing, with connections dropped
on such a regular basis that failsafe mechanisms needed to be introduced to
automatically resume querying in these cases. While only a single similar
failure occurred for Yahoo, Google never exhibited this kind of problem.

It should probably be noted that Google has the lowest average of hits
for all queries. In very general terms, the average number of hits differs
by several orders of magnitude between search engines, with Bing usually
claiming hit numbers two to three orders of magnitude higher than Google.

Finally, the caching approach proved viable, with the results for query
being accessed an average of 8 times.

36

Chapter 4

Discussion

In this chapter, I discuss the results obtained from the approaches detailed
in Chapters 2 and 3 above.

4.1 Two-Level Compression

Within the two-level corpus-compression approach, two different paradigms
for approximating the bit length of the compressed model were evaluated.
One supposedly enabled a quick analytic approximation of the worst-case
bit length of the model, while the others provided a more accurate numeric
solution.

When comparing these two paradigms for approximating the Huffman-
tree length in the model, an unexpectedly high degree of apparent functional
equivalence must be acknowledged. This degree of similarity between results
of the two paradigms (Figures 2.5 and 2.6) begs for an explanation.

One could argue that a largely balanced probability distribution for the
training data results in theoretical Huffman-tree lengths that are indeed close
to the worst case. This would make the usage of the worst case length as an
approximation viable only for the given data. Unfortunately no additional
training runs were conducted on different data, which would have been use-
ful to support or discredit this hypothesis. However, barring the possibility
of errors, no other explanations come to mind.

The results for either part of the two-level compression describing the
data (Figures 2.7 and 2.8) are worth of notice. By allowing either corpus or
model length to run unchecked, one would expect the system to put a strong
bias on the shortening of the bit length of the respective complement. How-
ever, Figure 2.9 suggests otherwise: While emphasis is on the “controlled”

37

CHAPTER 4. DISCUSSION

part, both compression sizes usually decrease with advancement of training.

4.2 Search-Engine Hits

Although only a very basic heuristic was employed for the determination
of accuracy for the search-engine hits approach, the results are promising.
Startling are the apparent differences in accuracy for the different genders
of nouns. While the feminine gender is generally recognized with a higher
probability than the masculine, comparison with the neuter gender reveals
startling differences. With a probability below that of any other category,
Bing performs worst in the correct classification of the neuter gender. In
contrast, for Yahoo, the neuter gender is correctly classified with the highest
probability.

It should be noted that even at its worst, Google out-performs its com-
petitors at their best.

4.3 Comparing the Approaches

While an exploration of the relation of information content and the measure
of search-engine hits might lead to interesting results, both approaches have
little methodology in common. I therefore compare them in terms of their
common task and output.

While the two-level compression approach as detailed in Chapter 2 builds
upon a very compelling theory, its (practical) applicability to the problem
at hand is at least doubtful. Above all, in its current state, the system is not
capable of even matching the performance of the heuristics-based system (as
presented by [Adolphs, 2008]) that I initially intended to improve upon.

Since the problem of data sparseness can only be addressed by entering
more and more word forms into the compression, (each time requiring a num-
ber of complete recalculations), I can see little practical use for this approach.

In contrast, (my implementation of) the search-engine system has a
higher potential for putting it to use as an actual tool to find morphological
features for any unknown word. As enforced by the terms-of-use agreements1

imposed by search-engine providers on all users of their APIs, I programmed
a tool that works as a standalone application. It can be used to analyze a

1See Appendix B for a somewhat amateurish analysis

38

CHAPTER 4. DISCUSSION

specific word form and dispatch all relevant queries to any of the three search
engines. This may form the basis for a future, support-vector machine (SVM)
aided system for the automatic determination of morphological features of
unknown word forms.

4.4 Outlook

For the two-level compression approach, several points for improvement can
be considered.

• A proper pre-categorization and splitting of the corpus into well-defined
subsets with common features could begin to tackle the issue of the
combinatorial explosion.

• The code could be profiled properly. By exposing and removing even
small redundancies in routines that get executed thousands of times,
runtime could be reduced significantly.

• Routines that suffer from significantly reduced performance due to not
being implemented in a native compiled language could be ported from
Lua to (e.g.) C.

I consider all of the above suggested improvements applicable to the code
of the software I implemented. However, none of these modifications can
be expected to result in improved accuracy of the resulting compressions.
While any successful improvement could make training on a larger data set
feasible, the methodology remains essentially unaltered.

For the search-engine approach, the most promise for future improvement
probably lies in the crudeness of the currently used heuristic. Training an
SVM on the data can be expected to expose many regularities that are un-
accounted for by the current heuristic. Indeed, preliminary tests conducted
with a popular SVM implementation and default parameters2 suggest an
accuracy in excess of 90% for this approach. This certainly merits further
investigation but was beyond the scope of this work to conduct properly.

2libsvm in conjunction with the shipped easy script

39

CHAPTER 4. DISCUSSION

40

Chapter 5

Conclusion

In this thesis, I evaluated two different approaches for the task of finding
the correct morphological explanation for an unknown word form, chosing
from a set of candidate hypotheses. A previous take on this issue has been
attempted by Peter Adolphs, who developed the required finite-state mor-
phological analyzer suitable for generating said candidate hypotheses from a
given word form that formed a crucial part for both approaches.
The first approach used insights from information theory and the minimal-
description-length principle to develop a corpus representation suitable for
minimizing theoretical compression size. The side effect of such a maximal
compression, namely the expected association of many word forms with their
correct morphological explanation, proved to be of a low magnitude.
The second approach used data-mining techniques on internet search-engines
to obtain frequency estimates on the predicted word-forms for all morpho-
logical hypotheses that potentially explain a given unknown word form. The
application of a basic heuristic to the data already resulted in decent accu-
racy, suggesting much potential for future improvement.
While the first approach appeals through its particular theoretical frame-
work, it fails to deliver any significant improvement to the basic heuristics
first suggested by Adolphs. The search-engine-hits approach on the other
hand performs well even in a very practical scenario, while additionally leav-
ing room for further improvement. The preliminary basic heuristics could
make way for a more advanced classification system in the vein of support
vector machines or similar.

41

CHAPTER 5. CONCLUSION

42

Bibliography

[Adolphs, 2008] Adolphs, P. (2008). Acquiring a poor man’s inflectional lexi-
con for german. In (ELRA), E. L. R. A., editor, Proceedings of the Sixth In-
ternational Language Resources and Evaluation (LREC’08). ELRA. URL:
http://www.lrec-conf.org/proceedings/lrec2008/pdf/867paper.pdf.

[Brin and Page, 1998] Brin, S. and Page, L. (1998). The anatomy of a large-
scale hypertextual Web search engine. Computer networks and ISDN sys-
tems, 30(1-7):107–117.

[Goldsmith, 2001] Goldsmith, J. (2001). Unsupervised learning of the mor-
phology of a natural language. Computational Linguistics, 27:153–198.

[Goldsmith, 2004] Goldsmith, J. (2004). An algorithm for the unsupervised
learning of morphology. Natural Language Engineering (to apperar).

[Google Inc., 2009a] Google Inc. (2009a). Google ajax search api terms of use.
[Online; accessed 02-November-2009].

[Google Inc., 2009b] Google Inc. (2009b). Google soap search api. [Online;
accessed 11-November-2009].

[Grünwald, 2004] Grünwald, P. (2004). A tutorial introduction to the minimum
description length principle. math/0406077.

[Grünwald, 2007] Grünwald, P. D. (2007). The Minimum Description Length
Principle (Adaptive Computation and Machine Learning). The MIT Press.

[Gulli and Signorini, 2005] Gulli, A. and Signorini, A. (2005). The indexable
web is more than 11.5 billion pages. In Special interest tracks and posters of
the 14th international conference on World Wide Web, page 903. ACM.

[Huffman, 1952] Huffman, D. A. (1952). A method for the construction of
minimum-redundancy codes. In PROCEEDINGS OF THE I.R.E., volume 1,
pages 1098–1102.

[Kilgarriff, 2007] Kilgarriff, A. (2007). Googleology is bad science. Computa-
tional Linguistics, 33(1):147–151.

43

BIBLIOGRAPHY BIBLIOGRAPHY

[Koskenniemi, 1983] Koskenniemi, K. (1983). Two-level Morphology: A Gen-
eral Computational Model for Word-Form Recognition and Production. PhD
thesis, University of Helsinki.

[Long et al., 2004] Long, J., Skoudis, E., and van Eijkelenborg, A. (2004).
Google hacking for penetration testers. Syngress Publishing.

[Manoochehri, 2009] Manoochehri, M. (2009). Microsoft releases bing api -
with no usage quotas. [Online; accessed 11-November-2009].

[Microsoft, 2009] Microsoft (2009). Bing web service api terms of use. [Online;
accessed 02-November-2009].

[O’Grady et al., 1997] O’Grady, W., Dobrovolsky, M., and Katamba, F.
(1997). Contemporary Linguistics — An Introduction. Longman.

[Oxford University Press, 2009] Oxford University Press (2009). Oxford ad-
vanced learners dictionary, possible entries for lemma. [Online; accessed
21-November-2009].

[Schmid et al., 2004] Schmid, H., Fitschen, A., and Heid, U. (2004). Smor:
A german computational morphology covering derivation, composition, and
inflection. In Proceedings of the 4th International Conference of Language
Resources and Evaluation, page 1263Âŋ1266.

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communi-
cation. Bell System Technical Journal, 27:379–423,623–656.

[Tran, 2008] Tran, S. (2008). Yahoo! opens up search technology infrastructure
for innovative, new search experiences, providing third parties with unprece-
dented access, re-ranking and presentation control of web search results.
[Online; accessed 02-November-2009].

[van Gelderen, 2009] van Gelderen, E. (2009). Function words. [Online; ac-
cessed 17-August-2009].

[Vitanyi and Li, 1999] Vitanyi, P. and Li, M. (1999). Minimum description
length induction, bayesianism, and kolmogorov complexity. cs/9901014.
IEEE Transactions on Information Theory, 46:2(2000), 446-464.

[Yahoo Inc., 2009a] Yahoo Inc. (2009a). Yahoo! search boss. [Online; accessed
02-November-2009].

[Yahoo Inc., 2009b] Yahoo Inc. (2009b). Yahoo! search boss. [Online; accessed
17-August-2009].

44

BIBLIOGRAPHY BIBLIOGRAPHY

[Yahoo Inc., 2009c] Yahoo Inc. (2009c). Yahoo! search boss services terms of
use. [Online; accessed 02-November-2009].

[Zielinski and Simon, 2008] Zielinski, A. and Simon, C. (2008). Morphisto:
An open-source morphological analyzer for german. In Proceedings of the
Conference on Finite State Methods in Natural Language Processing.

45

BIBLIOGRAPHY BIBLIOGRAPHY

46

Appendix A

Notation by Example

In order to provide a slightly more intuitive approach to the notation, it is in
the following reiterated by example. For reasons of simplicity, let the word
form “Mannes” be at the 23rd place of a list of word forms (W) from the
TIGER corpus (C). The word form w23 (“Mannes”) occurs f23 (1 8) times in
C. The set (H23) of all potential morphological explanations (hypotheses)
for w23 is generated. (See below for a subset of H23.)

...

Manne<NNeut_s_s>

Manne<NMasc_s_0>

Mann<NMasc_es_e>

Mann<NMasc_es_$e>

Mann<NNeut_es_e>

Mann<NMasc_es_$er>

...

Each entry in H23 is a concatenation of a stem and a morphological con-
tinuation class. e.g. for the above subset, h23,8 (Mann<NNeut_es_e>) is the
concatenation of t23,8 (Mann) and c23,8 (<NNeut_es_e>). All the potential
word forms (P23,8) generated with h23,8 and GEN are these:

Mann

Manne

Mannen

Mannes

Manns

As can be easily observed, p4 ∈ P23,8 (Mannes) is equal to w23 (Mannes), my
starting point. The index (4) of p4 has also be stored when encoding w23

using h23,8 and GEN .
In short: Mannes = GEN(Mann<NNeut_es_e>)4.

47

APPENDIX A. NOTATION BY EXAMPLE

48

Appendix B

Legal Gray Areas

Some care has been taken to stay within the legally permissible usage of the
search APIs. The official use case for all of the used APIs is mainly their
employment for providing application-/web site-embedded dynamic search
functions. As such, none of the search engine providers cover the here used
paradigm in their respective Terms of Use (ToU) agreements in satisfactory
detail. Permissive usage is generally defined in terms of what the user must
or must not do with the “obtained (search) results”, which in my case are
either simply discarded or not present, the search meta data (containing the
number of hits) being the only information of interest.

B.1 The Yahoo! BOSS API ToU agreement

The following paragraph from the BOSS API ToU document only apparently
prevents researchers from legally making any practical use of the API in the
manner described here.

“You are permitted to use the Services only for the purpose
of incorporating and displaying Web Search Results from such
Services as part of a Search Product deployed on your Web site
(“Your Offering”). A “Search Product” means a service which
provides a response to a request in the form of a search query,
keyword, term or phrase (each request, a “Query”) served from
an index or indexes of data related to Web pages generated, in
whole or in part, by the application of an algorithmic search
engine.”([Yahoo Inc., 2009c])

Another part of the same ToU requires the presence of a well defined search
mask on the web site incorporating the BOSS service.

“You will include in the user interface of Your Offering at
least one of the following implementations of the Service (each,

49

APPENDIX B. LEGAL GRAY AREAS

a “Link”): (i) a field or graphical area that accepts typed-in text
(i.e., a “Search Box”) enabling a user to enter a Query (ii) words
that are displayed in the form of hyper links, that generate a
Query comprising when clicked on or used by a user (a “Hyper
link”); or (iii) a method that sufficiently elicits a user’s specific
intent to initiate or refine a certain Query. You will use the
Links to initiate a Query to the Services, in response to which
Web Search Results are served from Yahoo!. You will not request
Web Search Results by any means except such Links, and will
not place Links or Web Search Results on any location except
for the Your Offering.”([Yahoo Inc., 2009c])

At no point is an automated query dispatch mechanism explicitly forbidden.
Nor is the user required to prohibit automated queries from being dispatched
through his web site. This would allow the usage of the BOSS API through
such a custom proxy web site, rendering the above restriction of the service
usage to web sites useless. Although Yahoo reserves the right to monitor the
web site for compliance with their ToU, there is no explicit requirement for
the web site to be (publicly) accessible. It should therefore be noted that all
data acquired through the BOSS API has potentially been acquired through
means permitted by the ToU.

B.2 The Microsoft Bing Web Service API ToU agree-
ment

Similar to Yahoo, Microsoft does not explicitly require public access to the
web site or application using their API. Unlike Yahoo, the Bing API ToU
contents itself with merely defining a comparatively liberal “code of conduct”
that reserves the right to apply the service to a number of uses. Among those,
a user must not

“(n) copy, store, or cache any Bing results, except for the
intermediate purpose allowed in §2(b);”([Microsoft, 2009])

Although there is no dedicated §2(b) anywhere in the ToU, the first part of
§2 says the following.

“Solely to the extent that you are in compliance with all
terms of this Agreement, we grant you a non-exclusive, non-
transferable, non-sub-licensable license to use the services to:
enable your Website or application to obtain Bing results; make
limited intermediate copies of the Bing results, solely as necessary

50

APPENDIX B. LEGAL GRAY AREAS

to display them on your Website or application; and host and dis-
play Bing results on yourWebsite or application.”([Microsoft, 2009])

One interpretation of the sole purpose of (part of) my “application” can
indeed be the extraction and ” of meta data from the result set.1 No explicit
prohibition of automated query dispatch has been specified, the closest (but
still inapplicable) mention of a potentially related usage pattern is given in
the following quote.

“(q) directly or indirectly generate impressions or clicks on
Bing results, or authorize or encourage others to do so, though[sic!]
any automated, deceptive, fraudulent, or other invalid means.”([Microsoft, 2009])

I come to the conclusion that the Bing ToU accommodates my use case.

B.3 The Google AJAX Search API ToU agreement

The Google AJAX Search API ToU agreement suffers from the same lack
of definition of what constitutes “Search Results” as the other agreements.
This is particularly unfortunate because of the following statements from the
introductory sentences.

“The API consists of [...] service protocols that enable You
to display results from Google searches [...] (“Google Search Re-
sults”) on your website, in your application, or in your other
product expressly authorized in writing by Google (each, a “Prop-
erty”), subject to [...] limitations and conditions [...]. You are
allowed to use the API only to display, and to make such uses as
are necessary for You to display, Google Search Results on your
Property.”([Google Inc., 2009a])

If the meta data that a query using the API returns along with the search
results for any query is considered as consitutes part of whatever is denoted
by “Google Search Results”, the user is prohibited to store them by the
following restriction.

“[You agree that when using the Service, You will not, and
will not permit users or other third parties to] copy, store, archive,
republish, or create a database of Google Search Results, in whole
or in part, directly or indirectly, except that You may display
Google Search Results that have been “clipped” through an end
user-requested action [...].;”([Google Inc., 2009a])

1The relevant module of my system has been made capable of running as a dedicated
“application” in a standalone mode for precizely this purpose.

51

APPENDIX B. LEGAL GRAY AREAS

It should be noted however that the mere caching of only meta data for the
purpose of later display might not pose a violation of these restrictions.2

Nor should this forbid the (statistical) post-processing of meta data before
“displaying” it, in which case the original meta data should still be displayed
alongside for reasons that become apparent in the following paragraph.

“You agree that You will not, and You will not permit your
users or other third parties to: (a) modify or replace the text,
images, or other content of the Google Search Results, includ-
ing by (i) changing the order in which the Google Search Re-
sults appear, (ii) intermixing Search Results from sources other
than Google, or (iii) intermixing other content such that it ap-
pears to be part of the Google Search Results; or (b) modify,
replace, obscure, or otherwise hinder the functioning of links to
Google or third party websites provided in the Google Search
Results.”([Google Inc., 2009a])

Meta data is here considered to fall into the category of “other content” and
the above conditions do not appear to restrict the post procession of the
“Search Results” in any way, as long as the original is retained alongside.
Finally, while the following paragraph restricts the crawling and indexing
of the search results, the use of the API for automated querying the search
engine is not explicitly forbidden here or in any other part of the ToU.

2As actual results are of no interest, “Search Result Clipping” can well be considered
an “end user-requested action” that justifies their disregarding by the system.

52

Affirmation

I hereby confirm that I worked on this thesis independently and that I
have not made use of any resources or means other than those indicated.

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig erstellt
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Thorben Krüger, Amsterdam, November 25, 2009

53

	Introduction
	Basic Concepts
	Morphology
	Compression

	Unsupervised Maximization of Corpus Compression
	Previous Work
	Theory of Corpus Compression
	Data Compression
	Representation of Word Forms
	Storing the Corpus
	Storing the Model
	Summary

	Practical Considerations
	Approximations
	Simplifying Assumptions and Abstractions

	Methodology
	Procedure
	System Features
	Dynamic Programming

	Results

	The Web-Search-Hits Approach
	Introduction
	Approach
	Dealing with Word Form Ambiguity

	Procedure and Implementational Details
	Corpus and Gold Standard
	Morphology Modification
	Accessing Search Engines
	Result Collection
	Result Analysis via Simple Heuristic

	Results
	Remarks on Search Engine Performance

	Discussion
	Two-Level Compression
	Search-Engine Hits
	Comparing the Approaches
	Outlook

	Conclusion
	Notation by Example
	Legal Gray Areas
	The Yahoo! BOSS API ToU agreement
	The Microsoft Bing Web Service API ToU agreement
	The Google AJAX Search API ToU agreement

