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Abstract

An overview and selective history of the fundamental theory underlying tra-
ditional artificial intelligence, namely cognitivism, and an alternative to this
approach are presented in this thesis. Major criticisms against cognitivism are
explicated in detail, and the main principles of an alternative approach prac-
ticed in the last two decades, dubbed New AI, are presented. Among these
principles are autonomy, situatedness and embodiment, which are then demon-
strated in two embodied models. One of these models is an empirical one of the
performance of hens in a visual discrimination task, and the other is a model of
categorization, where both models use an exemplar-based categorization mech-
anism. The thesis concludes with an argument for studying the emergence of
linguistic behavior and the acquisition and use of symbols, in order to build suc-
cessful models of human-level intelligence. It is further argued that embodiment
and situatedness are crucial in this endeavor.

Keywords: Categorization, embodied AI, New AI, behavior-based Al,
robotics, symbol grounding, situatedness, autonomy, exemplar-based learning
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Chapter 1

Introduction

Cognitive Science is more than a constellation of disciplines. Traditionally seen,
it has possessed a very specific research paradigm, one which provided a co-
herence among the very different disciplines that are supposed to collaborate
for one goal. The goal is to get an understanding of the fundamental pro-
cesses of cognition, and the paradigm is called cognitivism. In this Chapter, a
short overview of cognitivism, of how it was actualized in studies in Artificial
Intelligence and a review of some of the prominent criticisms directed against
cognitivism, especially in the context of Artificial Intelligence, will be given.

1.1 A Short History of Computational Psychol-
ogy

After the Second World War, a number of technologically sophisticated psy-
chologists and polymaths who worked for the development of better weapons
and a better coupling of weapon systems and humans applied their knowledge
of technical systems to the study of the mind and behaviour. What these scien-
tists realized was that one could talk about the systems they were working on
using intentional vocabulary. They afterwards took the next step and started
talking about intentional beings using vocabulary belonging originally to the
technical domain: “The new psychology sought to describe human beings using
vocabulary that could be metaphorically associated with technologically real-
izable mathematics” (Agre, [1997a, p.1). One can discern three major strands
of such scientific endeavour, although the scientists taking part were in close
communication all the time, through conferences, meetings and projects, and
they shared many ideas and visions. These strands are cybernetics, information
theory, and the digital computer.

During the forming years of cognitive science between 1943 and 1953, the
most important forebears of computational psychology were the cybernetics
group, most importantly Norbert Wiener. While working on servomechanisms
for better control of anti-aircraft artillery, Wiener realized the parallels between
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self-correcting artificial systems and living beings (Gardner, [1985] p.20). In their
seminal article ” Behaviour, Purpose, and Teleology”, Wiener and his colleagues
claimed that it is legitimate to speak of machines that exhibit feedback as “striv-
ing towards goals” (Rosenblueth et al.| [1943). In this article, the authors de-
scribed goal-oriented behaviour as movement controlled by negative feedback.
One important feature of their work was that they contrasted behaviourism,
which they took to study the input-output relationships of a system, with func-
tionalism, which studied rather the internal characteristics of the system it was
examining. Although they did not have any problem in principle with a func-
tionalist methodology, the cyberneticians opted for behaviourism in order to be
able to apply their methods to both living beings and machines.

Although the cyberneticians fascinated many people, their effect on the psy-
chological community was not immediate, because they were not psychologists
themselves. Rather, the effect of cybernetics penetrated into psychology through
interpreters, again chiefly psychologists who worked for the design of better de-
vices and better human-machine coupling (see [Edwards, 1996, p.209). It was
information theory developed by Claude Shannon that had a “clear and precise”
influence on psychology (Simon, 1996, p.195). Shannon, an electrical engineer
at MIT, “saw that the principles of logic can be used to describe the two states
of electromechanical relay switches” (Gardner) 1985, p.25) while he was at the
Bell laboratories for a summer job. He later worked at the same laborato-
ries on a speech encipherment system, which was intimately tied up with his
seminal contribution, “A Mathematical Theory of Communication” (Shannon),
1948). His theory “concerned itself mostly with measuring information and its
transmission over various channels with various capacities and levels of noise”
(Harnish, 2002, p.74). Shannon’s theory dealt with the transmission aspect of
information, rather than the semantic aspect: “Frequently the messages have
meaning: that is, they refer to or are correlated according to some system with
certain physical or conceptual entities. These semantic aspects of communi-
cation are irrelevant to the engineering problem” (Weaver and Shannon, 1949,
p.26). Another important aspect of his work was that it allowed one to con-
sider information to be independent of any kind of embodiment or context. He
achieved this generality by defining “information” in technically specific and
quantitative terms.

The third crucial contribution of wartime research to a computational psy-
chology was the digital computer. Military funded efforts into automatizations
of the computations done by humans (called “computers”) were going in par-
allel in the United States and in England. In the USA, analog computers were
being used to compute ballistic tables for antiaircraft weapons and artillery, but
they weren’t fast enough. A faster means of the automation of this process was
needed, and this was the raison d’étre of the ENIAC project (Goldstine, [1972]
p.135). John von Neumann was involved in this project towards the end of the
war, and he took part in the design of the first stored-program computer, the
EDVAC, the first computer in the modern sense according to some sources!.

'E.g. [Edwards| (1996), but McCorduck| (1979) mentions Germany’s Konrad Zuse as the
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Von Neumann had earlier met Alan Turing, a mathematician working as
a part of English efforts to crack the German ciphering of messages. Turing
had proved the answer to the third part of Hilbert’s Entscheidungsproblem to
be negative (Turing, 1936)%. Just as important as the result of this proof for
mathematics was for cognitive science the method he used to prove it. Turing
conceived an imaginary machine like a typewriter, called the Turing machine
after him. This imaginary machine with an infinite memory tape and a head
which could move the tape or change the binary state it was in, was the most
general information processing machine, in that it could execute any effective
procedure, i.e. “a set of rules which tells us, from moment to moment, precisely
how to behave.” (Minsky, 1967, p.167). The only requirement was that this
effective algorithm be expressed in binary code.

At the beginning, Turing’s work on the Turing machine had influence in
AT only through the work of McCulloch and Pitts, whose neural network was
mathematically equivalent to a Turing machine (McCorduck, 1979, p.74). It
was Turing’s later ideas on the possibility of a machine that could communicate
with a human through a text-only terminal and deceive him about its being
a human, that were much more influential (Turing) 1963). Through the so-
called Turing Test, Turing singled away written communication as the ultimate
medium of communication, ignoring all other aspects of human communication
like gestures, facial mimics, visual contact, a common context etc. This also was
a perfect example of disembodiment which Al later on turned into a scientific
ideology.

The efforts of the scientists from these three fields laid the foundations for
cognitive science, and it was the students of the great names of cybernetics, in-
formation theory and digital computer research that initiated cognitive science
as an independent research field. Examples of such continuity can be best seen
in the works of two groups, with equally strong psychological claims. The first
of these is Miller and his colleagues, who gave the first examples of information
processing psychology. Miller’s work is the first example of cognitive psychology
and is a good example of the culmination of a certain discourse and relationship
with the practical subject matter in a research program. The second example
is the work of Newell and Simon, who are among the progenitors of AI. They
transformed a technical field into a space of legitimation for psychological the-
ories. In the following, the main aspects of the principal work by these two
groups will be reviewed.

George A. Miller was in the middle of all the exciting technological advances
during wartime research, having worked at the PAL (Psycho-Acoustic Labora-
tory), a World War II institution for experimental psychology. There he was
exposed to the progress in cybernetics and information theory, and he later

designer of the first computer.

2The third question of Hilbert’s Entscheidungsproblem is “Is mathematics decidable?”, i.e.
is there an algorithm to determine the truth of any mathematical expression? The other two
questions were whether mathematics is complete and whether it is consistent.

3See McCorduck, 1979, p.57 for information on an unpublished paper by Turing which
contained many ideas later pursued by Newell and Simon.
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spent a summer studying mathematics and digital computation theory with
John von Neumann. After moving to MIT, Miller worked on a project involv-
ing a huge computer system for air defence (the SAGE project) which kept him
in close contact with the most advanced computer technology of his time. His
psychological work on acoustics and interaction with the state-of-the-art in cy-
bernetics and computational technology culminated in his famous paper “The
Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for
Processing Information” (Miller, 1956). Miller’s paper was an information the-
oretic look at the human memory capacity, and is one of the first examples of
information-processing psychology. He took the human subject to be a com-
munication channel, and the aim was to find out the “channel capacity of the
observer: ...the greatest amount of information that he can give us about the
stimulus on the basis of an absolute judgment” (Miller, 1967, p.38). One of his
conclusions was that “the span of absolute judgment and the span of immediate
memory impose severe limitations on the amount of information that we are able
to receive, process, and remember” (Miller, 1967, p.41). The ideas in this paper
can be traced back to his work at the PAL, where the psychologists saw that
the performance of humans at the outer limits of their capacities could reveal
truths about their performance in ordinary situations. Another influential work
which he co-authored was “Plans and the Structure of Behaviour’ (Miller et al.,
1960). In this book, the authors gave an account of intentional behaviour in
terms of goals, plans, knowledge, strategies, and tactics to achieve these goals.
One of the main features of their work was that they defined the “cognitive po-
sition”, and claimed that the people who held the cognitive position “are pretty
sure that any correlations between stimulation and response must be mediated
by an organized representation of the environment, a system of concepts and
relations within which the organism is located. A human being ... builds up an
internal representation, a model of the universe, a schema, a simulacrum, a cog-
nitive map, an image” (Miller et al.l 1960, p.7). The unit of analysis they used
to explain such representations and models was called a TOTE unit, short for
Test-Operate-Test-Exit. These hierarchical units aimed to replace the reflex arc
of behaviourism, and were in the same vein with computer algorithms: “a Plan
is to an organism essentially the same as a program for a computer”™® (Miller
et _al.. 1960, p.16). Nevertheless, TOTE units were formulated using the same
feedback principle as in cybernetics, and the announced goal of the authors was
“to discover whether the cybernetic ideas have any relevance for psychology”
(Miller et al., 1960, p.3).

The change from cybernetic models to symbolic models was, along with the
coupling of artificial intelligence with cognitive psychology, one of the two most
important motives that gave birth to cognitive science. Cyberneticians (and the
neurobiologists working in the tradition of McCullough) had a vision of repro-
ducing the functions of the nervous system, leaving it nevertheless inside the
body. The target of their studies was the brain as a machine, with input and

4Because Miller et al. (1960) use the word Plan in a very specific sense, they always spell
it with a capital p.
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output channels defined, and the behaviour specified through combinations of
low-level, basic units like reflex arcs. Complex behaviour would then emerge
through the interaction with the environment. Cybernetics studied the em-
bodied mind, whereas symbolic Al opted for the disembodied, formal, abstract
mind: “Instead of modeling brains in computer hardware - the central goal of
cybernetics - Al sought to mimic minds in software” (Edwards, 1996, p.239)°.
The Dartmouth conference is agreed to be the birth date of artificial intel-
ligence as an organized field. Pioneers in the field of Al came together in the
summer of 1956 to share their ideas. Among these scientists, two were already
presenting the results of their efforts on a program that could prove algebra theo-
rems from Russel and Whitehead’s Principia Mathematica. These two scientists
were Allen Newell and Herbert Simon, who had met at the Systems Research
Laboratory at RAND in 1952 and started working on their ideas about simulat-
ing human thought with digital computers. They were both impressed by the
fact that computers were “more than simply number crunchers and could, in
fact, manipulate all manners of symbols” (Gardner, 1985, p.145)°. Simon, who
had earlier worked on organizational systems, had realized the power of formal
methods based on symbols, such as logic, and mentioned the role of such meth-
ods in his work on organizations. For him, the role of formal logic in starting off
computational psychology was by demonstrating that “manipulating symbols is
as concrete as sawing pine boards in a carpentry shop” (Simon|, 1996, p.193).
However, he had also realized the main drawback of a formalist approach; not
every kind of human thinking is logical, and one needs more than deductive
logic to study processes such as metaphorical thinking: “Exploiting this new
idea in psychology requires enlarging symbol manipulation to embrace much
more than deductive logic” (Simon, 1996, p.193). Newell had studied with the
renowned mathematician Polya when he was an undergraduate. Polya, who
is also the author of a book named How to Solve It (1957) on mathematical
thinking, introduced Newell to the idea of heuristics, simple rules of thumb
one uses when solving problems. Heuristics were the major components Newell
and Simon used to constrain the search space, and they were also what allowed
their systems to cross the border Simon had recognized: the border between for-
malized symbol manipulation and human behavior which is not always logical,
and not always prone to being modelled with precise formalizations. Heuristics
were also one aspect of their principle that “artificial intelligence was to bor-
row from psychology, and psychology from artificial intelligence” (Simonl, [1996),
p.202). Accordingly, systematic decision procedures of any sort were excluded
to simulate as accurately as possible the processes employed by humans.
Newell and Simon collaborated with J. C. Shaw to develop an automatic

5The reasons for this shift are documented to be purely intellectual in histories by people
from inside the field, such as McCorduck! (1979) and [Crevier! (1996). Some different views can
be found in Edwards (1996).

6This recognition is stated lucidly by Newell: “The digital-computer field defined com-
puters as machines that manipulated numbers. The great thing was, adherents said, that
everything could be encoded into numbers, even instructions. In contrast, the scientists in Al
saw computers as machines that manipulated symbols. The great thing was, they said, that
everything could be encoded into symbols, even numbers.” (Newell, 1983, p.196)
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theorem prover, called the Newell-Simon-Shaw Logic Theorist. Shaw and Newell
devised the high-level language called IPL-I, a list processing language, which
would allow them to write more complex programs than possible using the
machine language. The first program they wrote using IPL-II, the successor
to IPL-I, was the Logic Theorist, which could prove theorems from Principia
Mathematica. Newell and Simon found out through thinking-aloud sessions
with subjects doing the Moore-Anderson logic task that human subjects were
using means-ends analysis as the primary problem-solving tool, and this led
to the development of the General Problem Solver (GPS). GPS was a means-
ends analysis system, and the computational processes were independent of the
particular topic on which it was reasoning. They then published Human Problem
Solving (1972), which presented their theory of human information processing.
The same ideas are presented more succinctly in a paper presented on occasion
of the 1975 ACM Turing award, Computer Science as Empirical Inquiry. The
definition of a physical-symbol system found in this paper is at the very heart
of the information processing paradigm, and of classical cognitive science:

A physical-symbol system consists of a set of entities, called symbols,
which are physical patterns that can occur as components of another
type of entity called an expression (or symbol structure). Thus, a
symbol structure is composed of a number of instances (or tokens)
of symbols related in some physical way (such as one token being
next to another). At any instant of time the system will contain a
collection of these symbol structures. ... A physical-symbol system
is a machine that produces through time an evolving collection of
symbol structures.(Newell and Simon), 1976], p.109).

The accompanying psychological claim is then the Physical-Symbol Systems Hy-
pothesis:

A physical-symbol system has the necessary and sufficient means for
general intelligent action. By ‘necessary’ we mean that any system
that exhibits general intelligence will prove upon analysis to be a
physical-symbol system. By ‘sufficient’ we mean that any physical-
symbol system of sufficient size can be organized further to exhibit
general intelligence. By ‘general intelligent action’ we wish to indi-
cate the same scope of intelligence as we see in human action . .. This
is an empirical hypothesis. (Newell and Simon, 1976, p.111). 7

THarnad (1990) gives a more detailed definition of a physical-symbol system as follows: A
symbol system is:

1. a set of arbitrary ”physical tokens” — scratches on paper, holes on a tape, events in a
digital computer, etc. that are

2. manipulated on the basis of ”explicit rules” that are

3. likewise physical tokens and strings of tokens. The rule-governed symbol-token manip-
ulation is based

4. purely on the shape of the symbol tokens (not their ”meaning”), i.e., it is purely syn-
tactic, and consists of
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The symbols which are manipulated have to be connected to the objects in the
outer world if the workings of the machine that manipulates them are to carry
any significance for humans, and this is accomplished with designation: “An
expression designates an object if, given the expression, the system can either
affect the object itself or behave in ways depending on the object” (Newell and
Simonl, [1976) p.110). A popular name given to Al based on these premises by
Haugeland (1985) is Good Old Fashioned AI (GOFAI, for short)®. [Haugeland
(1985) points out that there are two claims essential to all GOFAI systems
embodying a psychological theory:

1. Our ability to deal with things intelligently is due to our capacity to think
about them reasonably (including subconscious thinking).

2. Our capacity to think about things reasonably amounts to a faculty for
internal “automatic” symbol manipulation.

1.2 Cognitivism and Its Critique

The two efforts whose outlines were given (Miller’s work on Plans and Newell
and Simon’s pioneering work on cognitive modelling) are exemplary cases of
cognitivism. As Gardner remarks, one of the main principles of cognitive sci-
ence, as it was conceived, is a reliance on representations: “Cognitive science is
predicated on the belief that it is legitimate — in fact, necessary — to posit a sepa-
rate level of analysis which can be called the ‘level of representation’ ” (Gardner,
1985, p.38). The symbols used by the cognitive machinery, and the results of the
computations made by the machinery, when considered by an outside observer,
have meaning, but the physical symbol system does not manipulate these sym-
bols according to their meaning. “Just as is the case in modern logic, it is the
form of the symbol (or the proposition of which the symbol is a part) and not
its meaning that is the basis of its rule-based transformation” (Anderson) 2003,
p.95). This is the formalist aspect of cognitivism. In a symbol-manipulating
machine like the computer, then, the syntax has to mirror the ascribed seman-
tics, in order for the machine to function properly. The cognitivist claim is then
that “this parallelism [between syntax and ascribed semantics] shows us how
intelligence and intentionality are physically and mechanically possible” (Varela

5. “rulefully combining” and recombining symbol tokens. There are primitive atomic sym-
bol tokens and

6. composite symbol-token strings. The entire system and all its parts — the atomic tokens,
the composite tokens, the syntactic manipulations both actual and possible and the rules
— are all

7. “semantically interpretable:” The syntax can be systematically assigned a meaning e.g.,
as standing for objects, as describing states of affairs.

8In the rest of this text, Al work that relies on the physical symbol-system, and that can
be characterized by the definition of a GOFAI system will be referred to as either traditional
or symbolic Al
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et al., 1993, p.41). Another feature, which follows from representations and
formalism is the commitment to explicitly specifiable rules of thought.

One important characteristic of cognitivism is that it foresees computational
theories of mind and intelligence. These theories are formulated at the symbolic
level, which corresponds to the software level when implemented in a modern
computer. This software, however, is independent of the computing machinery
on which it is implemented. The central processing units (CPUs) of modern
computers are made of semiconductors, but this does not restrict a program
running on such a computer from running on another computing system that
can carry on the same computations, even though on a different substrate. A
radical example is using the whole population of China to build a computer,
where individual persons are acting like the gates in a processor made from
semiconducting material (Block, 1991]).

Cognitivism and Al have attracted a decent amount of criticism, regarding
both prevalent technical practices and basic philosophical assumptions. Here a
short account of three criticisms will be given. The first of these is the early
and fairly controversial one by Hubert L. Dreyfus in his book What Computers
Can’t Do”, which stems from a report on Al written for RAND. Dreyfus is a
philosopher, and his criticism is based on philosophical problems he sees in Al.
The authors of the interactivist critique of Al, Agre & Chapman, however, are
AT researchers themselves, and aim at a productive reassessment of Al. They
have principled arguments against traditional AI, but share some of its methods
and concerns. The third critique is the rather practical one by Rodney Brooks,
through practical robotic work that contrasts starkly with some of the central
methods and assumptions of traditional AI.

1.2.1 Hubert L. Dreyfus and What Computers Can’t Do

Dreyfus, after reviewing the work done in AI in what can be called its first
decade, the years between 1957 and 1967, points to what he sees to be the
major problems in machine translation, heuristic search (principally, Simon and
Newell’s GPS), and pattern recognition. One of the problems he points out with
cognitive simulation concerns the practice of using spoken protocols as sources
for heuristics in building heuristic-based Al systems. The spoken accounts given
by the subject, which are a result of conscious activity, involve search after a
certain feature has been recognized. An example for such a feature is a chess
player seeing that the rook of the opponent is not defended. The subject starts
with this observation and iterates through the possible actions he could un-
dertake. Zeroing in on this crucial feature was unconscious, and if this also
involves search, the subject should have been able to give an account of it, or
the rest of the search process should also have been unconscious. Dreyfus argues
that games like chess involve two stages on the part of the player: zeroing in
on an area, and then counting out explicit alternatives. The success of early

9Dreyfus wrote his book in 1972, and an updated version was printed in 1993 under the
name What Computers Still Can’t Do. The updated version is used here as the resource.
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game-playing programs is then due to work on “those games or parts of games
in which heuristically guided counting out is feasible” (Dreyfus, 1993, p.107).
Dreyfus also points out that problem solving involves a certain insight, in that
the subject perceives what is essential to the solving of the problem: “one breaks
away from the surface structure and sees the basic problem —what Wertheimer
calls the ‘deeper structure’— which enables one to organize the steps necessary
for a solution” (Dreyfus, [1993] p.114). One example for such a difference be-
tween surface structure and deeper structure is the order of symbols in logic
problems: in the expression P V @ the order of the symbols is not important,
whereas in the expression P = @ it is. In Newell and Simon’s programs, this
insight is introduced by the programmers in that they choose the most effective
formulation of the problem domain, a formulation that effectively includes this
level of insight. When using the simulations by Newell & Simon as a support
for their theory, Miller et al.l (1960) ignore this. According to their theory,
the human should first understand a problem, which corresponds to gaining an
understanding of the above explained deeper structure. They assume that it
is the machine that realizes the first step, using heuristics. Dreyfus concludes
that “[o]nly those with faith such as that of Miller et al. could have dismissed
the fact that Simon’s ‘planning method’, with its predigesting of the material,
poses the problem for computer simulation rather than provides the solution”
(Dreyfus, 1993, p.117).

Dreyfus maintains that the cognitivist idea that the human mind functions
like a general-purpose symbol-manipulating device relies on the following as-
sumptions about the essence of natural intelligence (Dreyfus, [1993) p.156):

1. A biological assumption that on some level of operation the brain processes
information in discrete operations.

2. A psychological assumption that the mind can be viewed as a device op-
erating on bits of information according to formal rules.

3. An epistemological assumption that all knowledge can be formalized, that
is, that whatever can be understood can be expressed in terms of logical
expressions.

4. An ontological assumption that everything essential to the production of
intelligent behavior must in principle be analyzable as a set of situation-
free determinate elements.

Dreyfus’ treatment of the biological assumption is rather short, because the
matter is, as he rightly observes, an empirical one, and our current (as of now
as well as of 1972) knowledge of the human neural machinery is insufficient
to inquire into such an hypothesis. The psychological assumption, however, is
tightly connected with a certain idea of what explanation in cognitive science
means. As Dreyfus points out, cognitivism is heir to a philosophical tradition
that takes as explanation of behavior a set of instructions which can be carried
out with as little interpretation as possible. The definition of a behavior in such
explicit steps, in addition to constituting an explanation, reveals how the agent
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actually produces that behavior. The problem Dreyfus points out with such
a conception of explanation is the level at which it operates. At the physical
level, one can not talk e.g. of the sides of a square, because at this level, one has
only a certain pattern of energy impinging on the retina. The claim of cognitive
science is the existence of a level of explanation between the physical and the
phenomenological, and the explanatory rules are then to function at this level.
But, Dreyfus points out, when one speaks of these rules and the predicates
they are based on (such as a corner, a certain color etc.) they are either at the
physical level, or already at the phenomenological, i.e. at the place to which
how they arrive has to be scientifically explained.

The epistemological assumption has a subtle, but crucial difference from the
psychological one: “those who make the psychological assumption suppose that
the rules used in the formalization of behavior are the very same rules which
produce the behavior, while those who make the epistemological assumption
only affirm that non-arbitrary behavior can be formalized according to some
rules, and that these rules, whatever they are, can then be used by a computer
to reproduce the behavior.” (Dreyfus, 1993, p.190). The assumption, therefore,
has two parts: (a) that nonarbitrary behavior can be formalized according to
some rules, and (b) these rules can then be used by a computer to produce
behavior. Against (a), Dreyfus points out that there is an empirical side to the
question whether this is so (and it is still open), but also an a priori argument is
purported by cognitivists. This argument takes behavior not necessarily to be
meaningful, and claims that because human beings are physical entities, they
should principally be amenable to a law-based simulation on a digital computer,
like any other physical entity. This, however, vacuates the cognitivist claim, and
runs counter to any hope of establishing a symbolic level of explanation that
enables a cognitive scientific practice. If a digital computer is to simulate the
human mind at a representational level, it should process the same kind of
information, which are symbols.

To argue against (b), Dreyfus contrasts the relationship between a theory of
competence and a theory of performance in generative grammar to the relation-
ship between the formal universe of science and the situational world of human
beings. As a scientific theory, a theory of competence is a formal theory that
goes after timeless and universal rules, but such a theory cannot explain the
use of a language, because that would require a theory of all human knowledge
(which takes us to the ontological assumption). A theory of the use of language,
however, if it were to be formulated in the same way like a theory of competence,
would have to “deal with phenomena which belong to the situational world of
human beings as if these phenomena belonged to the objective formal universe
of science” (Dreyfus, [1993] p.201).

The only way left to verify the epistemological assumption would be to hold
that the world can be exhaustively analyzed in terms of context-free data or
atomic facts. Dreyfus maintains that this argument, the ontological assump-
tion, is “the deepest assumption underlying work in AI and the whole philo-
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sophical tradition” (Dreyfus, 1993, p.205)!Y. This is the atomistic, rationalist
tradition. Descartes assumed that “all understanding consisted of forming and
manipulating appropriate representations, that these representations could be
analyzed into primitive elements (naturas simplices), and that all phenomena
could be understood as complex combinations of these simple elements”; Hobbes
claimed that “Reason ...is nothing but reckoning”; Leibniz “dreamed of reduc-
ing reasoning to an algebra of thought” (McCorduck, 1979, p.33). This tradition
culminated in Ludwig Wittgenstein’s Tractatus Logico-Philosophicus, where he
provided a concise statement of this syntactic and representational view of the
relationship of the mind to the world. In another article on the re-emergence of
the connectivist paradigm, Dreyfus and Dreyfus| (1988) conclude that

“AT can be thought of as the attempt to find the primitive elements
and logical relations in the subject (man or computer) which mirror
the primitive objects and their relations which make up the world.
Newell and Simon’s physical symbol system hypothesis in effect turns
the Wittgensteinian vision —which is itself the culmination of the
classical rationalist tradition — into an empirical claim, and bases a
research program on it.” (p.18).

All this is no new revelation, of course, and this continuity does not pose any
problems for symbolic Al as a scientific project. However, Dreyfus and Drey-
fus| (1988)) observe that the atomistic tradition had already undertaken similar
projects, although not in the natural sciences but in philosophy, and they did
not end particularly happy. The first of these projects is that of Wittgenstein’s,
who, after writing the Tractatus, “spent years doing what he called phenomenol-
ogy — looking in vain for the atomic facts and basic objects his theory required”
(Dreyfus and Dreyfus, 1988, p.26). The second project is Husserl’s phenomenol-
ogy. Both of these projects came under harsh scrutiny, at the time of the first
steps of Al, by no other than Wittgenstein himself, and a student of Husserl’s,
Heidegger. Both of the rationalist projects were based on a precise view of
understanding and meaning: “The branch of the philosophical tradition that
descends from Socrates through Plato, Descartes, Leibniz, and Kant to conven-
tional Al takes it for granted .. .that understanding a domain consists in having
a theory of that domain” and such a theory “formulates the relationships among
objective, context-free elements . . . in terms of abstract principles” (Dreyfus and
Dreyfus| 1988, p.25). Such an approach has been succesful in the natural sci-
ences, and this success has been generalized to all kinds of knowledge. What
AT assumed was that natural intelligence should also be based on context-free
representations. An important condition for using context-free elements is rep-
resenting context, i.e. the subset of information received from the environment

10Dreyfus gives a definition completely different from this one right on the following page.
There the ontological assumption is said to be the assumption that “everything essential to
intelligent behavior must in principle be understandable in terms of a set of determinate
independent elements” (Dreyfus| [1993) p.206). Clearly, this second formulation hinges on the
nature of intelligence, whereas the first one hinges on the nature of reality and how we analyse
it. In my opinion, the rest of the text justitifes the first formulation.
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that has a potential effect on the content of the representation, explicitly —
this is necessary for disambiguating potentially ambiguous terms. If the system
processes nothing but formal representations, the situation has to be formally
represented too, in terms of symbols of varying degrees of complexity. What an
artificial system then has to do is to recognize a context in this situation. The
main problem is that the recognition of this context requires another context,
because the situation will potentially include a huge number of potential con-
texts. One encounters an infinite regress, which can be resolved only by positing
an ultimate context. It appears that there actually is such an ultimate context
for us human beings: common sense. The problem now pertains to the nature of
common sense: whether it consists of a set of facts that can actually be amassed
using representations (frames, scripts, schemas etc.) of the kind used in com-
puters, or whether it is futile to work on formulating common sense, because it’s
not even knowledge as we know it. According to Dreyfus and Dreyfus (1988),
the crucial question is “Can there be a theory of the everyday world as rational-
ist philosophers have always held? Or is the common sense background rather
a combination of skills, practices, discriminations etc., which are not intentional
states, and so, a fortiori, do not have any representational content to be expli-
cated in terms of elements and rules?” (p.29). The authors are of the second
opinion, following the two critiques of rationalist tradition: “As Heidegger and
Wittgenstein pointed out,what commonsense understanding amounts to might
well be everyday know-how. By “know-how” we do not mean procedural rules
but knowing what to do in a vast number of special cases” (Dreyfus and Dreyfus,
1988, p.33). The way Dreyfus and Dreyfus (1988) paint the picture, we have
clear cases of philosophy doing progress, and philosophy culminating in technol-
ogy: rationalist philosophy made way for symbolic Al, which ignored criticism
stemming from the ranks of philosophy, whereas Heidegerrian phenomenalism
and the Wittgenstein of Philosophical Investigations supplied a criticism of ra-
tionalism. The thought-provoking question at this point is whether AI will also
experience such a change of methodology.

1.2.2 Philip E. Agre

Despite the philosophical power of Dreyfus’ arguments against a viable cogni-
tivist Al it is sometimes difficult to find in AT programs and the documentation
organized around them what one would call a theory of e.g. action or auton-
omy, which one could evaluate in the light of his arguments. The reason for
this is that rather than forming a coherent body of clearly stated hypothesis, Al
has embodied its foundational ideas in the programs and texts produced by its
practitioners. Agre, who studied AI at MIT, arrived at an original critical per-
spective, in that he discerned these ideas and how one can dissect them. Agre’s
critique consists of two parts. The first is a criticism of the theoretical basis
of AI. Agre arrives at this criticism by tracing the development of particular
ideas and making explicit the connection between these ideas and the impasses
to which they have led. The second criticism is about the practical organization
of AI work and the relations of these schemes with the theoretical assumptions
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and justifications.

Agre (1995) points out that AT ideas have their genealogical roots in philo-
sophical ideas and that AT research programs attempt to work out and develop
the philosophical systems they inherit!. The impasses that are then observed in
the technical work of (traditional) AI, such as temporal intractability and inscal-
ability to real life, are the results of these philosophical ideas; the reasons for the
persistence of these ideas, and the insistence on regarding the problems caused
by them to be of technical nature rather than resulting from internal tensions
in the underlying theoretical framework are, as will be summarized below, of a
rather social kind. |Agre| (1997b) claims that the main theoretical groundwork of
the cognitivist movement was the philosophy of Descartes, although there were
other philosophers that had argued for a mechanistic explanation of the mind,
like Hobbes. The reason for the identification with a Cartesian dualism was
that later mechanists such as Hobbes and Locke prescribed a certain physical
model, while the division of the body and soul prescribed by Descartes provided
a freedom as to what kind of a physical realization of human intelligence one
pursued:

Although nobody has mechanized Descartes’ specific theory, the
stored-program digital computer, along with the theoretical basis
of formal language theory and problem-solving search and the philo-
sophical basis of functionalism, provided the pioneers of Al with
a vocabulary through which rule-based accounts of cognitive ratio-
nality could be rendered mechanical while also being meaningfully
treated as mental phenomena, as opposed to physical ones (Agre,
1997b, p.142).

According to Descartes, the mind is sequestered from the body although it inter-
acts with it, and its privileged object of thought is mathematics. An important
idea of the cognitivists was that “the mind does not simply contemplate math-
ematics ...the mind is #tself mathematical, and the mathematics of mind is
precisely a technical specification for the causally explicable operation of the
brain” (Agre, [1997a), p.3). The first realization of this aim of mechanization of
the mind was the work of Newell and Simon, who were basing their work on
search in a space of possible solutions. The practical result was that the more
complex the environment became, the bigger grew the search space, which was
contained under the name of an ezplosion. |[Agre (1995) remarks that “The
metaphors speak of a struggle of containment between explosion and control.
Such a struggle, indeed, seems inherent in any theory for which action is said
to result from formal reason conducted by a finite being” (p.15).

Agre and Chapman (1990) distinguish between what they call the plan-as-
program view'2, and their alternative understanding of a plan, which they call
the plan-as-communication view. According to the plan-as-program view, the

11He also draws an unusual, but in my opinion obviously true, conclusion: “In short, Al is
philosophy underneath” (Agre, 1995, p.5).

12For examples of such planning systems, see e.g. [Fikes and Nilsson! (1971)), [Sacerdoti (1977)
and [Wilkins (1988). For survey of recent work see Long and Fox| (2003).
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use of plans is like the execution of a program. Carrying out a plan means
walking over the primitive commands included in the plan in a syntactic and
mechanical fashion. The generation of the plan and its execution are done
by different modules, and once it is produced, the execution of a plan is an
unproblematic matter. No or very little additional reasoning is necessary, and
sensing the environment is needed solely for the monitoring of the conditions
necessary for the correct execution of the plan. Additionally, the plan executor
is domain-independent, because all the necessary knowledge about the domain is
included in the plan. [Agre and Chapman (1990) point to four principle problems
that haunt the plan-as-program view:

1. Tt poses computationally intractable problems.

2. It is inadequate for a world characterized by unpredictable events. If a
plan does not anticipate a possible deviation in the environment, its rigid
structure will avoid the robot reacting to the respective contingency or
making use of the opportunity.

3. It requires that plans be too detailed™.

4. Tt fails to address the problem of relating the plan text to the concrete
situation. Plans are usually formulated in terms of symbols referring to
objects in the environment, and the executing module has to find the
connection between the symbols and the objects. This, however, requires
in many cases domain knowledge.

In addition to giving a view of the intellectual fundamentals of AI, Agre has
observed and criticized the internal workings of the field, i.e. how Al systems are
conceived, constructed, discussed and how the researchers react to (especially
continually resurfacing) technical problems. This critique is utterly relevant for
a deeper understanding of cognitive science, because it opens a perspective on
the processes which enable researchers to ignore criticism, and put off practical
symptoms of theoretical difficulties.** According to Agre, there is a certain way
that Al systems are built. Such words as plan or knowledge, although they have
precise meanings in particular systems, are vague in an overall sense, in that
they enable the researcher to make a wide range of domains commensurable to
each other. This is the case with the meaning of Plan in Miller et al. (1960):
“absolutely any structure or purposivity in anybody’s behavior . ..can be inter-
preted as the result of planning” (Agrel [1997bl p.147), and nevertheless, this
book is the field’s “original textbook in the rhetoric of planning”. The construc-
tion of a model then works inside out using such basic terms. One takes into
consideration a behavioral pattern that exhibits regularity, and tries to arrive

130ne can read this as saying “you don’t need to prove your plans”. McDermott (1987)
makes the same point: “think of the last time you made a plan ...Chances are you could
easily cite ten plausible circumstances under which the plan would not work, but you went
ahead and adopted it anyway.”

14For an interesting and more pragmatic look at the practical problems of Al research and
possible solutions, see McDermott (1981).
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at a set of basic actions which can form the basis of a hierarchical structure.
The hierarchical character of such systems was already proposed by Miller et al.
(1960). Once a formal hierarchy has been provided, such as TOTE units that
come together to make other TOTE units, one has a sufficient repertoire to
assemble all the other actions. Then, these basic units are used as terms in
formalizing the behaviour in a certain way.

The vagueness of such terms has a number of effects on the Al practice.
First of all, although this provides an unbounded generality, in that everything
can be seen as a plan under such a vague definition, it precludes any alterna-
tive way of seeing things. When plan means any structured and hierarchical
process, it is impossible to think of any structured human activity outside the
technical language based on plans. Pertinent to this is the second point, the
reaction of the Al community to systems that claim to have a different and
alternative worldview. This is a result of the engineering aspect of Al, and con-
fines the discussion of different ideas to actually building a system that works.
This insistence on practical consistency has installed a deep technical language
and led to the evaluation of all proposals “within a tacit system of discursive
rules that virtually rules out alternatives from the start” (Agre, 1997b, p.151).
Therefore, even when you claim having developed a different perspective, the
reaction will be one of unsurprised readiness that reinterprets everything in the
already existing language:

AT’s elastic use of language ensures that nothing will seem genuinely
new, even if it actually is, while AD’s intricate and largely uncon-
scious cultural system ensures that all innovations, no matter how
radical the intentions that motivated them, will turn out to be en-
meshed with traditional assumptions and practices (Agre, [1997b)
p.151).

The third problem is the effect of reducing the meaning of a word to a much
simpler technical term when one assimilates the word in a formalization. For
example, for action this would be reducing it to “a repertoire of possible ‘ac-
tions’ assembled from a discrete, finite vocabulary of ‘expressive elements’ or
‘primitives’ ” (Agre, 1995, p.13). Once such a concept takes its place in the for-
malization, the original meaning of this concept and its potential implications
as possible resources for ideas are lost for AI. This leads to the result, Agre ob-
serves, that “formalization becomes a highly organized form of social forgetting
— and not only of the semantics of words but of their historicity as well” (Agre),
1995, p.14). As a result, the history of ideas that find their applications in Al
systems are not regarded by Al researchers as worth inquiring.

Another important characteristic of cognitivist talk is the tendency to con-
flate “representations with what they represent” (Agre, 1997b, p.9). This is
obvious in the case of Miller et al.l (1960): the book switches between the retro-
spective description of a behavior by an observer and the purported Plan that
the organism executes to produce this behavior. What the authors did, accord-
ing to |[Agre| (1997a), was actually to bring together two ideas: the idea that
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structured action could be predetermined by mental processing, which origi-
nates from Lashley| (1951, and the notion that the mental structures could be
hierarchical, which came from the work of Newell and Simon on GPS (Agre,
1997a), p.143). This theory of plans led in Al to the above explained plan-as-
program view. In addition to the above mentioned technical difficulties, there
is one peculiarity about the status of plans in Al [Agre (1997a) claims that
Miller et al. (1960) contains actually two notions of Plan: one is the Plan, that
is constructed as one goes through a process, and then there are Plans that are
pulled out of a repository of Plans and executed as a whole. These two notions
are both aimed to be an account of the origins of action, but they are conflated,
and hard to distinguish from each other. The aim of Miller et al. (1960)’s the-
ory is to give an answer to how human activity can respond to the limitless
changes that take place in the environment and at the same time demonstrate
an overall coherence and routine. [Agre| (19972) claims that the two notions of
Plan aim to answer one of the two contrasting elements in this theory each:
“the incremental assembly of the Plan accounted for flexibility in the face of
contingencies and the execution of preconstructed Plans accounted for routine
organization. Neither theory accounts for both” (p.150). The crucial conclu-
sion has to do with the implications of this inconsistency for the use of plans
in AL the plans-as-program view cannot be a definite doctrine, but a discursive
formation, whose practical logic is hidden in the programming work, and in an
historical perspective.

1.2.3 Rodney Brooks

Rodney Brooks, an Al researcher at MIT, has argued strongly against the disem-
bodied and mentalist standpoint of traditional AI and cognitivism. In addition
to questioning the main tenets of cognitivism and traditional AI, he carried
out a research program aimed at creating robots that could operate in realis-
tic dynamic environments. The details of this research program, and similar
paradigms of embodied modelling and Al will be dealt with in the next chapter.
Here, an overview of Brooks’ critique of cognitivist Al will be given.

Brooks criticizes primarily the abstracting approach of cognitivist AIl. Ac-
cording to[Brooks (1991b)), Al has abstracted away the subjects it found unsuit-
able for study, and traditional AT “typically succeeds by defining the parts of the
problem that are unsolved as not AI”. The subjects that are abstracted away
are motor skills and perception. This way, the only possible subjects of study
left for AI are world models and problems based on symbolic representations.
Information on the environment is to be supplied by the sensory apparatus,
and cognitivist Al has accepted the study of how perceptual data is processed
to form symbolic representations not to be in its own field of study. However,
perception and motor skills are the hard problems actually solved by natural
systems. One of the arguments Brooks brings forward for this point is the time
it took for the evolution of mobile organisms, and the relatively shorter time it
has taken vertebrates and human beings to evolve afterwards. The abstracting
method of Al researchers is rationalized with the argument that it is the scien-
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Figure 1.1: The SMPA architecture (adapted from Brooks| (1986))).

tific attitude to do abstractions, and this abstraction serves for the computer to
experience the same Merkwelt'® as the human being. However, Brooks argues,
the Merkwelt programmed into the computer is perceived by introspection, and
it does not necessarily correspond to the Merkwelt that we actually experience.
Moreover, each natural and artificial creature with its own sensory apparatus
will have its own Merkwelt.

Traditional AT has manifested its tendency to draw a clear line between cog-
nition on the one side, the field it has picked for study, and perception and action
on the other, in what Brooks calls the SMPA architecture (see Figure [1.1). In
this kind of architecture, there is a central system which connects to percep-
tual modules supplying input to it and action modules which receive commands
from it. Because the perceptual modules deliver symbolic inputs and the motor
modules receive again symbolic representations, the central system is a sym-
bolic information processor. Brooks (1990) remarks that the perceptual module
is expected to deliver “a description of the world in terms of typed, named
individuals and their relationships”. This assumes a knowable objective truth,
which AT implementers try to achieve using modal or non-monotonic logic. This
leads to increasingly more complex and cumbersome, and therefore biologically
increasingly less plausible models.

Brooks (1991a)) gives a history of how the SMPA architecture became ac-
cepted and widespread. He argues that during the years following the Dart-
mouth conference, the disembodied and abstracting method of Al was legiti-
mated through certain demonstrations which were falsely interpreted. In the
case of vision, it was expected on the AI side that vision research would one
day be able to deliver the representations derived from images that would then
enable the agent to construct a model. This belief was supported by systems
that could match visual images to pre-stored representations. One example
is Roberts| (1963), which took a grey level image of the world, and extracted a
cartoon-like line drawing. [Brooks (1991a) points out that in this case “the light-
ing was carefully controlled, the blocks were well painted, and the background
was chosen with care”. Although Roberts’ program was working on a very

15 Merkwelt, a concept put forward by fvon Uexkiilll (1909), refers to the perceptual world of
a living being. See |Ziemke and Sharkey| (2001)) for a survey of the use of this concept in Al
and its relevance for embodied AI and Artificial Life.
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strictly controlled set of inputs, the result was that people believed that it was
possible, at least in the future, to extract a world model from camera images.
Another well-known example is Shakey, one of the first embodied Al robots
(Nilssonl, [1984). Shakey operated in specially prepared rooms, and navigated
from room to room, following goals such as pushing an object from one place to
another. A planning system named STRIPS was used to construct plans, and
this planner used information stored in a symbolic world model. This model was
maintained using sensors such as a black and white television camera and bump
sensors. Shakey was very successful, because it was among the first demon-
strations of integrated mobility, perception, representation, planning, execution
and error recovery. However, according to Brooks (1991a)), Shakey was carefully
engineered to make use of the features of the environment. The surfaces and
objects in the environment had uniform and contrasting colors, the space was
carefully lighted, and there were relatively few blocks and wedges, in order to
avoid partial obscuration. The dark rubber baseboards and the lighter colored
floor made clear boundaries, which meant that “very simple and robust vision of
trihedral corners between two walls and the floor could be used for relocalizing
the robot in order to correct for drift in the robot’s odometric measurements”
(Brooks|, [1991a), p.143). Shakey had an effect similar to Roberts’ vision system:
although it was a carefully engineered system that could operate in a certain
environment and due to this did not provide any chances of being extended to
natural and dynamic environments, it bred the idea that one day, through the
improvement of the sensing apparatus, one would arrive at systems that can
deliver reliable representations of the outside world.

1.2.4 Two problems of Al

Among the problems symbolic AI has ran into, two are well-known and offer
insights into the critics summarized above. These are the symbol grounding
problem and the frame problem. While the frame problem is a concrete technical
problem for which AI researchers have been looking for solutions, the symbol
grounding problem is rather theoretical. Both problems, however, are relevant
to the discussion, and are summarized here.

1.2.4.1 The Symbol Grounding Problem

The cognitivist assumption was put to question by Searle in his famous chinese
room argument (Searle, 1980). He replaced the central processor of a computer
with a human being, which receives questions written in Chinese symbols that
are totally incomprehensible to her. The human inside the room has a book in
her native language that explains her algorithmically how she should respond to
the symbols she receives from the outside. The answers she thus composes are
then passed on to other people outside the room. These people can understand
Chinese and, having seen the symbols that were fed into the room, they interpret
the symbols that come out as responses which are meaningful. Searle’s argument
appeals essentially to the obvious intuition that the human being understands
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no bit of Chinese just by carrying out the rules. Therefore, a computer cannot
understand anything just by running a program, either. Cognition cannot be
pure symbol manipulation 19

If the meanings of the symbols a symbol system is using are extrinsic to the
system, i.e. are a result of external interpretation, rather than being intrinsic,
this system cannot be a consistent model of cognition. The meanings of the
symbols used in such a system are parasitic to them, and are a result only of our
interpretation. This is the symbol grounding problem, which has been defined
by (Harnad, 1990, p.335) as follows: “How can the semantic interpretation of a
formal symbol system be made intrinsic to the system, rather than just parasitic
on the meanings in our heads? How can the meanings of the meaningless symbol
tokens, manipulated solely on the basis of their (arbitrary) shapes, be grounded
in anything but other meaningless symbols?”. In a later paper, Harnad (2003)
gives the explicit definition of grounding to be the capacity of symbols “to pick
out their referents”.

Harnadl (1990) points out that the cognitivist solution to the symbol ground-
ing problem, having perceptual modules that ground the symbols to the world
outside, is not viable, becuase this “radically underestimates the difficulty of
picking out the objects, events and states of affairs in the world that symbols
refer to, i.e. it trivializes the symbol grounding problem”. Another important
aspect to the symbol grounding problem is that in a system which uses grounded
symbols, the way the symbols are processed is dependent not only on the ar-
bitrary shape of the symbols, but also, maybe even exclusively, on the content
of the percepts on which the symbol is grounded: “In an intrinsically dedicated
symbol system there are more constraints on the symbol tokens than merely
syntactic ones. Symbols are manipulated not only on the basis of the arbitrary
shape of their tokens, but also on the basis of the decidedly nonarbitrary “shape”
of the iconic and categorical representation connected to the grounded elemen-
tary symbols out of which the higher-order symbols are composed” (Harnad),
1990)*.

16 After being subject to criticisms about the radically abstracting nature of the Chinese
room argument, Searle has presented it in a more straightforward form:

e Aziom 1: Syntax is not sufficient for semantics
e Axiom 2: Minds have contents; specifically, they have intentional or semantic contents.

e Aziom 3: Computer programs are entirely defined by their formal, or syntactical,
structure.

e Conclusion: Instantiating a program by itself is never sufficient for having a mind.

17]conic and categorical representations are components in Harnad| (1990)’s model of ground-
ing. Iconic representations are “internal analog transforms of the projections of distal objects
on our sensory sensory surfaces”, and categorical representations are “invariant features of
the sensory projection that will reliably distinguish a sensory member of a category from any
nonmembers with which it could be confused”.
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1.2.4.2 The Frame Problem

The frame problem has been identified by McCarthy and Hayes (1969). What
it means has caused some difference of opinion between the philosophers and
AT scientists, with the Al researchers blaming the philosophers for not under-
standing what the frame problem actually is'®. According to [Hayes (1987), the
frame problem appears when a logical artificial reasoner is made to reason in a
changing world, where there are events that have effects on entities, instead of
a static world like the worlds of game playing and theorem proving programs.
The usual symbolic Al way to model a changing world is to introduce entities
to capture the state of the world at a certain time, and to use these entities as
temporal indices to distinguish what is true at one time from what is true at
another instant. Any properties or relations whose value can change are then
treated as relations between their static values and these time indices. Events
and actions are then functions from instants to instants, and the effect of any
event or action is described in the end state that it produces. Here crops the
frame problem: one can specify the consequences of a change, but there is no
sure way of specifying the non-consequences. Many properties are defined as
being relative to the time instant, because they can change, but if they are not
changing, this should be deducible: “whenever something might change from
one moment to another, we have to find some way of stating that it doesn’t
change whenever anything changes. And this seems silly, because almost all
changes in fact change very little of the world” (Hayes| 1987, p.125). The frame
problem therefore is, stated from a symbolic perspective that looks for the best
representational system to model the world, “the problem of finding a repre-
sentational form permitting a changing, complex world to be efficiently and
adequately represented” (Janlert, 1987, p.7).

Although the frame problem at the first glance may look like a technical
one, it has been pointed out that it is actually an important philosophical prob-
lem, and that it actually is paradigmatic of symbolic Al, in that it is one of
those problems that have a characteristic property: “They seem to involve
...computations that are, in one or other respect, sensitive to the whole be-
lief system” (Fodorl 1983, p.114). Harnad provides a very different view of the
problem, however. Computational systems built by Al researchers are under-
determined: just as one instance of a collision of two billiard balls is underde-
termined in that there are many theoretical interpretations of it, so can there
be many interpretations of a toy domain. Nevertheless, when we are project-
ing our interpretation onto such a system, we are overinterpreting it, typically
by projecting such terms as knowledge, thought and meaning. Consequently,
“a ‘frame’ problem arises every time we run up against evidence that we have
exceeded the limits of that underdetermined toy; evidence that we are overin-
terpreting it — and have been all along” (Harnad, [1993). The problem seems to
be with ungrounded symbols that do not have any intrinsic connections with
what they are representing. Pylyshyn too realizes this: “It may be that we need

18See the contributions in [Pylyshyn| (I987). It is also interesting how little agreement there
is between the philosophers that try to identify the problem.
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to get away from logical calculi entirely and use some analog medium of repre-
sentation for reasoning about change — a medium whose properties ensure that
the representation remains faithful to the represented world through a natural
harmony of causal correspondence” (Pylyshyn| 1996, p.xiii).
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INTRODUCTION



Chapter 2

New AI and Robotics

The creation of intelligent artificial beings has been a dream of human beings
since the creation of the first automatons. In this lies of course the difficult
question, what is intelligence? Cartesian dualism gave a clear answer to this
question: whatever distinguishes us humans from animals. Although animals
have sensation, they lack thought. Symbolic Al accepted this idea and took
disembodied intelligence exhibited e.g. while playing chess and proving mathe-
matical theorems to be prototypical cases of intelligent behavior. This position
formed the core of cognitivism, which relied on symbolic representations, for-
malism and rule-based transformation as the primary tools with which to create
artificial intelligence. The problems created by this position and some philo-
sophical arguments against it have been summarized in the first chapter. In
this chapter, an alternative approach which was born as a reaction to symbolic
Al will be explained.

For symbolic Al, intelligence resides in structures of knowledge in the head
(or hard disk, or some other kind of storage medium) of the agent. These
structures contain objective knowledge in terms of certain atomic fundamentals,
and are evoked when the agent needs them. What structures should take effect
and how they will be combined to create new structures is decided by a rational
deliberation mechanism. This deliberation mechanism receives the goals and the
current state of the agent and objects, events and situations in the environment
as symbolic inputs. Intelligence is internal to the agent, just like the world on
which this mechanism operates: the world is copied into the brain, and thinking
takes place on this copy, instead of the reality outside.

New Al is an umbrella term that covers Al methodologies which attempt to
locate intelligence in the interaction between the agent and the environment.
Intelligence is intelligent behavior, and this behavior does not necessarily have
to be the product of symbolic knowledge and structured, recursive plans in the
head of the agent. One important result of the stress on this interaction is the
necessity to accept change as given. Intelligent agents are not living in a static
environment that does not change until they do something: natural intelligent
agents are parts of a dynamic world in which change is the rule rather than
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the exception. Intelligent agents have to use this dynamics to create intelligent
behavior, possibly making use of the features of the environment, external tools
and possibilities. Even structures which could let the agent transfer knowledge
onto the environment can be a part of these external possibilities (Clark, [1997).
An agent is much better off tracking the world through its sensors than modelling
it, because the source of intelligence for an agent is the external dynamics rather
than internal symbolic structures, and it is costly to model dynamic as compared
to static structures. This also removes the problem of accurately projecting the
world onto a symbolic representation scheme. In Brooks’ words, the world is its
own best model.

Due to the fact that the tools offered by symbolic Al for the analysis and
design of adaptive dynamic agents were not adequate!, New Al has turned to
other fields for inspiration and tools. One of the main fields from which New
AT draws inspiration is biology. In general, New Al shares a definition of intelli-
gence with biology. This definition is based on the ability of an agent to survive,
and in order to survive, to adapt to the environment: “The behavior of a system
is intelligent to the extent that it maximizes the chances for self-preservation
of that system in a particular environment” (Steels, 1994, p.23). Adapting to
the environment involves changing the behavior, which is the proof of intelli-
gence. Another source of inspiration is continental philosophy, represented by
the likes of Heidegger and Merleau-Ponty, who criticize the tradition of rational-
ist philosophy and point to the role of the body and the cultural environment
in intelligent human behavior.

In New Al, one can distinguish two major directions in the interpretation
and utilization of these ideas from different sources. The first of these is a rather
liberal AI way of interpreting concepts. This involves using them as sources of
inspiration, instead of sticking to a strict and rigid quantitative description.
This is what behavior-based Al does: behaviors are defined according to what is
observed by the observer, rather than data collected from specific experimental
control variables. The other is the psychological and biological way of interpre-
tation which involves a more meticulous and quantitative description of concepts
and their relationships. In this case one can talk of biorobotics. In what follows,
the important notions of embodiment, situatedness and autonomy, which are
common to both methodologies, will be discussed, and then a short summary
of the two different methodologies in New AI will be given.

2.0.1 Autonomy and Agency

Before going on with the discussion, it is necessary to give a definition of what
an autonomous agent is. According to Russell and Norvig (2003), “An agent
is anything that can be viewed as perceiving its environment through sensors
and acting upon that environment through actuators” (p.32). Therefore, auto-
maticity is attributed to an agent: it is a locus of control, and can take actions

1The frame problem can be seen as a symptom of the hostility of traditional methods to
the modelling of agents that act in dynamic worlds.
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as a result of its decisions. Automaticity involves only a control structure that
is not external to the agent — the decisions that the agent has to make should
not be made by an external source of intelligence, such as a human being with
a remote control.

An autonomous agent possesses, in addition to automaticity, autonomy. Ac-
cording to [Smithers (1995), “[ajn agent is autonomous if it is able to cope with
all the consequences of its actions to which it is subjected while remaining vi-
able as a task-achieving agent in the world it operates in” (p.123). Autonomy
is the reliance of an agent on its own experience instead of prior knowledge
of the designer. It is not an all-or-none feature: AI has up till now produced
partially autonomous agents but has been unable to come up with completely
autonomous ones. Autonomy has two aspects, which are related to each other.
The first of these is independence from the viewpoint of the designer. Conven-
tionally, the designer partitions the environment an agent is to operate in into
categories that she thinks are useful for the agent. This partitioning relies on
the concepts the designer utilizes, and does not necessarily correspond to any of
the different categorization schemes which the agent could generate, and which
could be more advantageous for it. Therefore, an autonomous agent should
learn as much as possible of its own categories. The second aspect of autonomy
is that an autonomous agent should “learn what it can to compensate for partial
or incorrect prior knowledge” (Russell and Norvig, 2003} p.37).? This involves
the agent’s learning from the results of its own actions. Another important
point is that an autonomous agent has to be persistent in time in order to learn:
for example, a program that is removed from memory once it has completed
its interaction with the user can not be counted as autonomous, because it can
not evaluate the interaction and use what it has learned in another course of
interaction. An autonomous agent therefore has the following properties:

e Sensing: The agent has transducers which enable it to react to certain
impulses from the environment.

e Acting: Actuators enable the agent to move in the environment and act
on objects.

e Goal directedness: An agent has its own agenda which affects its actions
and provides a context.

e Independence from the viewpoint of the designer
e Learning, i.e. improvement of performance through interaction with the
environment,
2.0.2 Embodiment and Situatedness

Embodiment and situatedness are two concepts that are strongly emphasized by
the behavior-based methodology. Embodiment refers to the agent that is being

2My favorite informal definition of autonomy is that the only way to make an autonomous
agent believe that there is an apple in front of it is to put an apple in front of it.
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modelled having a physical body®. It also refers to the idea that “intelligence
cannot merely exist in the form of an abstract algorithm but requires a physical
instantiation, a body” (Pfeifer and Scheier, 1999, p.43).

According to Brooks (1991a)), there are two reasons why it is crucial for
intelligent systems to have a body. The first is that “only an embodied intelli-
gent agent is fully validated as one that can deal with the real world” (Brooks,
19914, p.15)*. When a simulated environment is used, one faces the additional
task of proving that the environment used was realistic enough, and that it
did not exclude the necessary features of the real world. If an agent that has
actual sensors and actuators is used, all the issues of developing an agent for
the real world have to be faced. One question that is also relevant here is why
use robots? The symbolic approach to Al emphasized operations in an abstract
mental space, and therefore focused on systems operating in simulated environ-
ments. New Al, however, principally promotes the use of physically embodied
agents as experimental devices and physical spaces as operating environments
for these agents. The discussion about the advantages of simulated and physi-
cal environments is still unresolved, but one argument is worth stressing here.
In a simulated environment, the dynamics of the agent-environment couple is
modelled as a part of the building the simulation.

The second reason why having a body” is crucial for an intelligent agent
is that “only through a physical grounding can any internal symbolic or other
system find a place to bottom out, and give ‘meaning’ to the processing going
on within the system” (Brooks, 1991al, p.15). This is the physical grounding
hypothesis, which is as important for embodied Al as the fundamental theorem
of calculus is for calculus. In the first chapter, the symbol grounding problem
was explained: the representations used by a system without the means to
ground its representations in its environment derive their meaning from the
meanings attributed to them by the designer. The general idea is that, apart
from being a mere theoretical objection to a practically functioning way of
building intelligent systems, this also has practical implications. A symbolic
approach neglecting the importance of grounding will run into certain problems,
because “grounding provides the all-important constraints on representation and
inference with which the purely symbolic approach has such trouble” (Anderson,
2003)).

Situatedness refers to the agent acting in a world that surrounds it, and there
being a constant interaction between the agent and the world. Obviously, it is
difficult to make a clear-cut distinction between embodiment and situatedness:

3A relatively restricted view of embodiment is taken here. For comparisons of different
notions of embodiment, see [Ziemkel (2001) and |Chrisley and Ziemke| (2002). The concept of
embodiment here refers to what Chrisley and Ziemke| (2002) distinguish as physical embod-
iment, which is the requirement that “the realizing physical system be a coherent, integral
system, that to some degree persists over time”.

4Steels (1995a) has a very strong view on the subject: “When we are building robots we
are clearly no longer simulating intelligence or making computational models of intelligence,
we are building artificial intelligence” (p.93).

5It is also worth noting that having a body is a remnant of the mentalist system of
metaphors; one should read it as being a body.
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these are closely related concepts that are not mutually exclusive. [Anderson
(2003) points out one difference between the two concepts: “it is the centrality
of the physical grounding project that differentiates research in embodied cog-
nition from research in situated cognition, although it is obvious that these two
research programs are complementary and closely related”. Symbolic Al sys-
tems are structured as problem-solving systems: a problem with the initial state
is given to the agent or a central mechanism in the agent, and then a solution
is produced. This procedure is repeated until a goal state is reached. This is
not the case for real agents that act in real worlds. The world is a constant
source of sensory impulses, and the coupling between the agent and the world
is not severed once the agent believes it has enough information for engaging
in a certain action, or that it has found the solution for achieving a goal. For
a situated agent, it is also unnecessary to build an internal world model: the
world is always there, and it can be referred to again and again as a space for
acquiring information from and looking up the results of possible operations in.

2.1 Behavior-Based Al

Behavior-based AI draws inspiration from biology and aspires to build (usually
embodied) agents that exhibit intelligent, goal-oriented behavior. It shares some
principles with biology, and analyzes intelligent beings at the behavioral level, in
contrast to the knowledge level(Newell, [1982), as in symbolic AI, or the physical
(i.e. implemantational) level, as in connectionist AI%. A behavior is defined as
“a regularity observed in the interaction dynamics between the characteristics
and processes of a system and the characteristics and processes of an environ-
ment” (Steels| (1994)). In the following, a number of significant behavior-based
approaches will be reviewed. Although it is not strictly behavior-based, the
concrete-situated approach is reviewed in this section, because it has a lot to
offer for behavior-based Al.

2.1.1 Subsumption Architecture

In the first chapter, a review of Brooks’ criticism has been given. His main point
was that Al abstracted away from fundamental aspects of natural intelligence
such as perception and action, and declared only processes suitable to being
modelled with symbolic processes as proper for Al research. This resulted in
the SMPA architecture, where sensing is seen to be delivering perfect representa-
tions of the environment in the form of symbolic representations and the motor
module is seen to be receiving commands from the central directive. When a
robot builder wants to design a system that is to solve a certain problem, he
decomposes the problem into a series of functional units, as shown in Figure[1.1.
Each of these units solves a certain problem and passes on information to the
next unit. Brooks| (1986) takes a different route and decomposes the problem

6For an explanation of this well-known division of cognitive scientific research into three
different levels of analysis see [Marr (1982).
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reasan about behavior of objects
plan changesto the world
identify objects
Sersors——» monltgr changes ———>» Actuators
build map
explore
wander

avoid objects

Figure 2.1: Task-level decomposition (adapted from Brooks (1986)).

level 2 |

Cm— level 1

Sensors —L—)p level 0 Actuators

Figure 2.2: The subsumption architecture (adapted from [Brooks| (1986)).

into task achieving behaviors: “Rather than slice the problem on the basis of
internal workings of the solution we slice the problem on the basis of external
manifestations of the robot control system” (see Figure 2.1)).

Brooks has championed an architecture called the subsumption architecture
to implement task-level decomposition. This architecture is based on behaviors
implemented as levels on top of each other. The most basic behavior, in the case
of Brooks| (19806) avoiding objects, is the level 0, and once this level is complete
and achieves the designated behavior, it is not changed in later additions to the
system. The next level, level 1, which in the mentioned study is wandering,
is built on top of level 0. It can examine data from the lower level, inject
data into the internal interfaces of level 0 suppressing the normal data flow, or
prevent a signal from the behavior from reaching the actuators, i.e. inhibit it.
Once a level is programmed and is functional, it is not changed any more, and
further functionality is built on top of it. The behaviors are implemented as
combinations of finite state machines. The communication links are static, and
there is no way to access global data. As a result, it is impossible to have a
central control unit and a universally accessible world model. The subsumption
architecture is illustrated in Figure 2.2l
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RAN1S

The subsumption architecture and Brooks’ “mobots” (moving robots) are
supported by the physical grounding hypothesis. Physical grounding is possible
only if the agent has a physical body that carries sensors, and if it is situated
in a physical environment. Brooks ties situatedness to the idea of a robot
continuously referring to the world instead of an internal model, an idea he
sloganizes as “The world is its own best model” (Brooks, [1991a). Functioning
in the real world is not enough, however: this world should not be a simplified
one, where certain properties are generalized so as to provide cues about a
universal property such as the location of the robot. With a simplified world
it is very easy, even with the best of intentions, to build a submodule (a level)
that relies on a simplified property in the environment, like a sharp contrast in
the colors of the ground and the walls (Brooks| [1991b). Once one module relies
on this property, the functioning of the whole system depends on this one single
property. After moving on to the real world, one realizes that the system has
to be rebuilt. In the case of Brooks’ own robots, the real world corresponds to
the unmodified worlds found around their laboratory, with the people working
in the environment allowed to walk around, and environmental conditions such
as lighting allowed to change.

The subsumption architecture has been implemented and tested on a number
of robots and in a number of tasks, such as navigation (Brooks, [1986), chasing
moving objects (Connell, 1987)7, wandering around in office areas and collecting
empty soda cans (Connell, [1989)), walking (Brooks, [1989), map building and use
(Mataric, [1989)) etc. (see Brooksl (1990) for a short summary of the robots built
until 1990). The general framework has been extended to a humanoid robot
named Cog to examine human-level intelligence (Brooks et al., [1999; [Brooks
and Stein, 1994). The robot consist of an immobile torso with 21 degrees of
freedom. Lower level control is done with the subsumption architecture, but
the higher level computations also include symbolic processes, where symbolic
binding is restricted to within individual processors. Among the phenomena
Brooks aims to model are social interaction and development. This causes an
even heavier reliance on embodiment and situatedness. The humanoid robot
is to learn human-level interaction by interacting with humans, which requires
that the robot have a realistic humanoid body (Brooks et al., [1999).

2.1.2 The Concrete-Situated Approach

In the first chapter, the arguments of Philip E. Agre and David Chapman against
some prevalent notions of cognitivist Al, especially the role of planning, were
presented. Agre, in individual efforts as well as in collaboration with David
Chapman, has proposed and to some extent realized a different approach to
intelligent agency. Their approach, stated in most detail in Agre (1997a)), draws
its inspirations from continental philosophy and ethnomethodology. There are

"The robots Tom and Jerry explained in this article also served to demonstrate how little
raw computation is necessary for the subsumption architecture: the whole program fitted on
a single 256 gate programmable array logic chip.
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two aspects to this approach, which one could call the concrete-situated ap-
proach. The first is that it aims to develop, in contrast to a theory of cognition
or a theory of thinking, a theory of activity, which should answer the question
what determines an agent’s actions? The second is that it is interactionist.
The concrete-situated approach has two interconstraining parts: a theory of
cognitive machinery and a theory of the dynamics of activity.

Interactionism, as /Agre| (1997al) defines it, is an alternative set of metaphors
that are to replace the set of metaphors that form the scientific program of
mentalism. The interactionist methodology is concerned with the relationship
between the machinery and dynamics: its fundamental question is “what kinds
of machinery get into what kinds of dynamics in what kinds of environments?”
(Agre,1997al, p.61). The most important principle of the interactionist method-
ology is machinery parsimony: “postulate the simplest machinery that is con-
sistent with the known dynamics” (Agre, [1997a), p.62). This means that instead
of looking for novel machinery, we should look for novel dynamic effects.

Against the problem-solving approach of the established AI practice, Agre
stresses the role of routines in human life. Routines are “the frequently repeated
and phenomenologically automatic rituals of which most of daily life is made”
(Agre, 1985). A routine can consist of a series of actions, without the order
of the actions being determined at the beginning, but rather each consecutive
action being chosen as the result of a new process of decision. The actions com-
prising a routine are not dictated by the routine; they are simply the individual’s
chosen actions in particular situations (Agre, [1997a, p.109). Routines are not
static structures, they evolve and change, and the main reason for change in
a routine is a change in the relationship between the individual and the envi-
ronment. A routine is a dynamic. The difference between the nouns “routine”
and “dynamic” is that a routine involves a particular individual whereas a given
dynamic might occur in the lives of many individuals (Agre, [1997al p.108).

In the plan-as-program methodology, the planner passes a completed plan to
the executor, which then gets executed step by step. [Agre (1997a) proposes to
abolish this distinction between planner and executor and conceive of the agent
as thinking through the actions it undertakes at every moment. This does
not correspond to radical re-planning, i.e. letting the planning module run at
every step. Instead, once a train of reasoning is carried out it becomes part of a
network based on a combinational logic circuit ®. At every moment, inputs to the
system are updated, and reasoning consists of the changed inputs propagating
through the circuit. This way, the structure observed in the behavior of an
agent is the result of similar decisions made in similar situations, instead of a
fixed schema of action.

8 Agre chooses digital circuitry as an alternative to computational metaphors, because “it
is the fundamental stuff out of which digital computers’s processors are made: fast, simple
and continually sensitive to the states of both the agent and the environment” (Agre, 1997a)
p.261).
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2.1.2.1 Running Arguments

The Running Arguments (RA) system built by Agre is a demonstration of how
routines can evolve and be the grounds for prevailing structure in activity. This
system operates in a blocksworld simulation, where it takes commands from
the user regarding how it should manipulate blocks with labels. The system is
based on rules formulated in the Life language. Each rule consists of a list of
conditions that can be on or off at any moment” and a proposition which is
assigned on once the conditions are satisfied. A cartoon example is as follows:

R1: (if (sees the-shepherd the-wolf)
(rings the-shepherd warning-bells))

This rule would read “As long as the shepherd sees the wolf, the shepherd rings
warning bells” (Agre, [1997a, p. 127). As the “as long as” at the beginning
of the phrase shows, this rule is on only when the conditions are satisfied and
turns off when they are not satisfied any more.

Another important component of the system is a dependency maintenance
unit. This unit is connected to a symbolic module called the reasoner which,
through some mechanism, produces “thoughts” that the agent decides to believe
or disbelieve. These thoughts consist of a conclusion and a set of reasons. When
such a thought is formulated by the reasoner and handed over to the dependency
system, it integrates this thought (from this point in the system on called a
justification) into the dependency network’. When a situation is presented
to the whole system in the form of propositions, the dependency system finds
a configuration of on and off assignments to the conclusions that settles the
network, if that deduction has already been made and the proposition has been
integrated into the network. Therefore, a deduction that has been made once
does not have to be repeated, but the system nevertheless thinks through each
decision it makes.

In the case of RA, the central reasoning unit is a running arguments system.
In a running arguments system, a decision arises through a discussion between
different components of the machinery. At any moment, a proposal can be made
about what has to be done and why. In case of a disagreement, the argumenta-
tion is carried on, each component bringing reasons why its proposal is better
than the others. This corresponds to a style of rule-language programming,
where the rules are formulated in the Life language.

In a number of experiments in the blocksworld environment, the RA system
exhibited the emergence of routines, but also some obvious deficiencies (see
Agre (1997al), Chapter 10 for a summary of the experiments). When the system
first runs, the central reasoning unit does most of the work, and many rules
have to be fired and arguments have to be evaluated in order for actions to
be taken. Once a decision has been taken in a certain situation, in similar
situations that follow the central reasoning system does not have to be run again,

9Agre (1997a) actually refers to positive and negative output values as in and out. For
reasons of clarity they are referred to as on and off here.
101t is this network that is modelled on a combinational logic circuit by Agre
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because previous argument structures have been integrated into a dependency
network. The dependencies are helpful, because the simulated hand usually
has to do the same things, and such dependencies, by accelerating operation,
cause the emergence of routines. There is one condition for such transfer and
consequent speeding up to occur: the objects in the environment which the
simulated hand is manipulating should carry the same names: if in one case
a block that has to be put on another is named BLOCKA and in the other
BLOCKB, the reasoning system has to carry out the same argumentation
once for each case, and the result is integrated into the dependency network
separately in both cases. The reason for this apparently trivial deficiency is the
inability of dependency networks to implement independent variables, which
would allow the complete system to treat two differently named blocks the same
way. One other important deficiency of the RA system is that it operates on an
internal world model. The problems with world models have been explained in
the first chapter; RA is not free of them.

2.1.2.2 Pengi

A game-playing program developed by Agre & Chapman offers substantive im-
provements on the RA system (Agre and Chapman (1990), Agre and Chapman
(1987)). This program plays the game Pengo, where the aim of the user is to
navigate a penguin in a dynamic environment populated with ice cubes and
bees. If the penguin comes too close to a bee it dies and the game is over, but
the bees can be killed by kicking ice cubes at them. Ice cubes slide vertically or
horizontally when they are kicked if there aren’t any obstacles on the way. The
player wins the game when all the bees are dead. The Pengo environment pro-
vides a number of obvious improvements to that of blocksworld: “things move,
the geometry is more complicated, the arrangement of objects in space is more
meaningful, and the individual tasks relate in a clear way to an overall goal”
(Agre, 1997al, p.264). Pengi, the program that plays Pengo, is based on the
same running arguments system explained above. The whole system is coded
into a combinational logic circuit, and at each moment a new decision on what
has to be done next is made. Although Pengi does not employ complex plans, it
exhibits goal-oriented behavior, and additionally it makes use of opportunities
that arise and avoids gracefully any threats that show up.

Pengi consists of a central system, a visual system and a motor system. The
visual system employs visual routines that operate on the data structures of the
gametl, The motor system is very simple in that only two actions are possible:
moving up, down, left or right and kicking. In order to decide what to do, Pengi
visualizes what has to be done, instead of using a world model. This is done
using visual markers.

Visual markers are also an aspect of a new theory of representation proposed
by [Agre and Chapman! (1990). In a conventional program, representations like

1See (Agre) [1997a, p.275) for a detailed description of the fairly complicated design of
Pengi’s visual system and the use of visual routines.
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BEE35 or bee_a would refer to the same two bees irrespective of in which condi-
tions the representations were individuated. These representations would main-
tain their references even if the bees were out of the screen or out of the sight
of the agent. Such universal representations, however, are not common in real
life, as|Agre| (1997a) points out. For example, each time we sit at a dinner table
that’s decorated with utensils, we do the same things with the utensils, i.e. eat
our meal. We do not individuate each and every set of utensils separately each
time we want to use them. Agre and Chapman| (1990) call their alternative
idea of representation indexical-functional, or deictic representation. Instead
of a semantic relationship posited by traditional representations, the authors
promote a causal relationship between the agent and the indexically and func-
tionally individuated entities in the world. Being indexically individuated refers
to being defined in terms of the relationship to the agent, whereas being func-
tionally individuated refers to being defined in relation to the ongoing projects
of the agent. Deictic representation that Pengi makes use of are of the form
thee-bee-I-am-chasing. Such a variable refers to different bees at different times,
but enables Pengi to make use of the contingencies currently available. Visual
routines are used to register aspects of the entities in the environment, such
as the-bee-I-am-chasing-is-running-away, by visually marking the entities in the
environment with markers that correspond to such deictic representations 2

Pengi “plays a pretty decent game of Pengo ...it wins from time to time
and usually puts up a good fight” (Agre, 1997al p.265). It engages in activity
that shows variability: it will carry on different actions after each other to
arrive at a goal, and this without planning. The reason for this variability is
not structures that are kept inside the head and combined in a disembodied
abstract space to produce more complex structures, but rather the dynamics of
the interaction between Pengi and the game environment: “Pengi has its own
kind of generativity, an infinity of dynamic possibilities rather than an infinity
of structural combinations” (Agre|, 1997a), p.23). Despite this variability, there
is one important problem with Pengi: it does not learn. It learns neither the
circuit with which it begins execution, nor does it improve itself relying on its
own experience. Although e.g. [Agre and Shrager (1990) offer a first view on
the learning and evolution of routines, there aren’t any adequate proposals on
how such a network could be learned.

One important feature of Pengi is the reasons for which it would take an
action. In a system that employs the plan-as-program view, an agent that
follows a plan to kill a bee would take the action of hitting an ice cube because
the program (or the plan) counter points to that action. Pengi, however, takes
an action because it makes sense: it would kick an ice cube if it were possible
to kill a bee with it. This way, Pengi makes use of contingencies, and does not
have to re-plan whenever there is a change that makes it impossible to carry out
the plan. What enables this is that each time Pengi has to make a decision, the

12For a recent work on the comparison of the performance of a system operating in the blocks
world when it uses deictic representations and propositional representations, see Finney et al.
(2002a) and Finney et al.|(2002b). For an argument for the role of deictic representations and
motor routines, seeBallard et al.l (1997)).
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decision network runs again, producing a fresh evaluation of the environment.
This is called improvisation by [Agre (1997a). The use of deictic representations
also enables Pengi to engage in the same kind of interaction with each cube and
bee, without having to individuate and plan for each and every one of them.

That Pengi can get around in the Pengo environment is of course no proof
that plans are unnecessary or are not used at all by human beings. The point
is rather that their role is more complicated than plans-as-programs. Plans
are just one kind of resource, just like any other resource human beings use,
e.g. tools, external memory devices etc. The way plans are used by humans is
similar to how instructions given in natural language are used, i.e. as linguistic
entities that have to be interpreted in their own right before they can be used.
Chapman (1991) is an interesting study into the use of instructions as additional
resources in the context of computer games.

2.1.3 Steels’ Language Games

One eminent scientist that does research on embodied agents is Luc Steels.
Steels carried out extensive research on behavior-based AI. He focused at the
beginning on low-level studies on intelligence (e.g. see [Steels (1997b)). The
robots developed by Steels operated in robot ecosystems, physical environments
cluttered with multiple robots and objects. Behaviors are implemented as net-
works of processes, where a process can increase or decrease a quantity (that
is a control variable, such as the speed of a motor) as a function of the evolu-
tion of other quantities (Steels, 1994)). What is stressed by Steels in these early
studies is the emergence of behaviors from the dynamics of interaction between
the process networks and the environment (Steels, [1991).

Steels aims to move beyond the basic capacities such as obstacle avoidance
and navigation he and many other researchers have studied in embodied AI. Ac-
cording to [Steels and Vogt (1997), in order to move from agents that can solve
such low level tasks towards agents that could be said to exhibit “cognition”,
robots have to be equipped with at least basic communication abilities. This
communication must however again be autonomously developed by the agents
themselves, in the spirit of the embodied AI bottom-up approach, and not de-
signed or programmed in by a human engineer. The communicated concepts
and the means of communication must be grounded in the sensory-motor expe-
riences of the robot (Steels, [1997a). This way, robots could be used to study
the origins of language and meaning in the self-organization and co-evolution
of autonomous agents (Steels, 1996¢). Steels and his collaborators carried out
a number of experiments with robotic and software agents to study the emer-
gence of reference and meaning, a lexicon, syntax and phonology. Here a brief
overview of the first two aspects will be given.

In the studies of perceptually grounded meaning creation, meaning is defined
as “a conceptualization or categorization of reality which is relevant from the
viewpoint of the agent” (Steelsl, 1996b). The hypotheses tested is that the ori-
gins of meaning can be found in construction and selection processes embedded
in discrimination tasks. The agent attempts to discriminate one object or situ-
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ation from others using just low-level sensory processing. Each individual agent
is able to construct its own visual features by segmenting the input space of its
different sensory channels. The attempts to perform a discrimination based on
the current feature repertoire and the adaptation of the repertoire is called a
discrimination game. In one such game, if the discrimination based on one or
more distinctive feature sets fails, the agent will construct new feature detec-
tors. Feature detectors are refined in the process and form discrimination trees.
As a result, “the system arrives quite rapidly at a set of possible features for
discriminating objects. Most interestingly, the system remains adaptive when
new objects are added or when new sensory channels become available” (Steels,
1996bl, p.14).

Lexicon formation is based on language games, which involve a dialogue
between two agents that interact in a common situation. A word is a sequence
of letters drawn from a finite shared alphabet, and an utterance is a set of words.
Agents have the capability of creating new words (as random combinations of
letters from the alphabet) and associating these new words with sets of features
they are meant to denote (Steels, [1996al). One agent communicates words to
the other and the other agent tries to guess the set of features of the commonly
perceived situation that the other agent might refer to with a word. It might
find out that its initial guess was wrong when the same word is later used in
another situation that does not contain the same features. Then another feature
set would have to be assumed as the meaning of this word. On the other hand,
a word can successfully be used by both agents if the assumed meaning (i.e.
feature set) fits to all situations they both encounter. By using the common
situation for feedback throughout a history of interactions, a set of common
words and meanings emerge in both agents. As a result of the experiments,
“it was shown that self-organization is an effective mechanism for achieving
coherence and many properties of natural languages, in particular synonymy,
ambiguity and multiple-word sentences, occur as a side effect of the proposed
lexicon formation process“ Steels (1996a).

The two agents start out with no repertoire of perceptual distinctions and
no lexicon. After a number of discrimination and language games, they have
acquired

1. a perceptual system for categorizing sensory experiences and identifying
distinctive feature sets and

2. a lexicon that associates features or feature sets with words and vice-versa
(Steels and Vogt, [1997)).

In a sense, the agents thus can be said to autonomously acquire grounded means
of communication.

There is one important problem with Steels” approach to symbol grounding,
however. Namely that the agents interact solely for the purpose of playing these
pre-programmed games. Thus, the categories they acquire serve no other pur-
pose for the agents than to utter and compare them with other such categories.
In this sense, “[t/he system has no concept of ...what to use the produced
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labels for, i.e. it is not embedded in any context that would allow/require it
to make any meaningful use of these labels® (Ziemke, [1999). The case is very
different with categories and symbols used by natural agents like us: Our cat-
egories develop primarily due to and to serve our needs, they are related to
our purposes in successfully and autonomously interacting with the world. A
category is “ours®“ when it has a function in our cognitive machinery that goes
far beyond just using it in communication. The first step to symbol grounding
should be learning categories that serve the agent in its interaction with the
environment. And communication itself is used to successfully solve a task to-
gether with other agents, a task beyond just finding a common sets of words.
The inventor of the idea of “language games” himself, Ludwig Wittgenstein,
pointed out that we do not just learn words like “chair” and “table”, but rather
get involved in behaviors like sitting on chairs, putting things on a table etc.,
and learn to use words in such contexts in which they play a role. Luc Steels’
approach resembles rather the simple model of Augustinus explicitly criticized
by Wittgenstein, where words are labels attached to features of a commonly
perceived scene that one agent points to instruct the other (Wittgenstein) 1953,
p.4).

Steels has also carried out experiments based on language games with robots.
These experiments are reported in Section 13.3.4.2, due to their relevance in the
context of the work explained in Chapter [3.

2.2 Biorobotics

Although they share fundamental principles and methods, the biorobotic
methodology contrasts with behavior-based Al in its emphasis for comparison
with natural agents and the level at which the models are formulated. In this
section, some important examples of biorobotics will be presented and the main
characteristics of the methodology will be discussed.

In one study, Prof. Dr. Holk Cruse and his team at the University of Bielefeld
studied the coordination of the six legs of the locust Carausius morosus and the
emergence of different types of gait patterns depending on the structure of the
surface the insects walked on and their moving speed. This model was then
implemented in the form of a six-legged mobile robot by Prof. F. Pfeiffer and
his team at the Technical University Munich. The robot model showed similar
gait patterns under similar conditions (surface structure walked on, walking
speed). Moreover, the experiences with the robot model led to a significant
improvement: It was realized that the interaction with the environment could
be used to simplify the computations needed within the agent. This insight
into an important aspect of the behavior of the locust was made possible by the
availability of an embodied model (Dean et al., [1999; [Schmitz et al., 2001]).

Another prominent example of biorobotics is the robot model of the navi-
gation behavior of the Saharan ant Cataglyphis Fortis. This ant is able to find
its way back to its nest over a long distance even though pheromones cannot be
used to mark the track because of the heat and the desert environment lacks
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cues which could be used as landmarks by an ant. The proposal of Prof. Dr.
Riidiger Wehner (University of Ziirich, Switzerland) that the ant can make use
of polarized light to find its way back was tested with a mobile robot model
implemented by Dr. Dimitrios Lambrinos of the AI Lab at the same university.
A robot model with a polarized light sensor was programmed with the proposed
orienting mechanism and was tested in the original Saharan habitat of the ant.
In the course of developing this real-world implementation, the researchers were
able to understand the role of certain neuronal mechanisms possessed by the ant
for the processing of the polarized light data, which seemed redundant before.
As it turned out, the robot had to use similar mechanisms to deal with the noisy
real-world data. This had not been understood until an embodied model tested
in the real-world environment had been used (Lambrinos et al.l [1999).

Webb! (1994) presents a study of a robotic model of cricket phonotaxis. The
phonotaxis behavior consists of the female crickets’ finding a conspecific male by
moving towards the sound the male produces. The model by Webbl (1994) brings
together the sensory and motoric aspects of the problem, and does this without
recourse to the traditional notions of representation and construction of a world
model. The embodied model makes use of simple filters and direct connections
between the sensory channels and motors, and local variables whose role is
comparable to “the function of the gears connecting the motors to the wheels”
(Webbl, [1994) p.53), rather than to those of representations in a symbolic system.
The robot was tested in experimental conditions comparable with those used
with crickets, and was able to demonstrate a number of key effects that occur
also in experiments with crickets, such as phonotaxis, recognition of the ideal
syllable rate, and choosing one sound source despite the existence of multiple
sources. Webbl (1994) concludes that “the cricket’s response can plausibly be
explained by a combination of slow auditory neural response (effective low pass
filtering) and temporal summation in motor neuron response (effective high pass
filtering)” (p. 51). See Figure 2.3 for a diagram of the cricket auditory system
and the circuitry implemented in the robot control system.

Webb points to a number of facts about the model that are important. The
first of these concerns the nature of robots as models of biological phenomena.
She points out that in the cognitive scientific studies of robotics, the connection
to biology consists of adopted vocabulary. However, there are also not many bio-
logical perceptual systems that are understood good enough to be implemented
on robots. The methodology championed by Webb is based on the idea that “the
process of attempting to implement physical models of biological systems can
potentially contribute to our understanding of how perceptual systems work”
(Webb, 1994, p.45)1¥. Webb also argues strongly for the value of robotic models
in biology. First of all, the sensory and motor apparatus of the robot is as a
matter of fact less precise than those of the insect, which means that the perfor-
mance of the robot is not a result of superior machinery: the robot constitutes
a subset of the capabilities of the cricket, rather than an abstraction of them.

13This is in contrast to Beer’s approach, which will be explained below.
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Figure 2.3: The cricket auditory system (dotted lines and italic text) and the
circuitry that copies its function. RMS (Root Mean Square) circuits measure
the amplitude of the signals. Adapted from Webb and Harrison! (2002)).

The second point concerns the value of robot models against simulation'?. She
makes three pertaining points:

1. A model will be trivial as far as it does not attempt to bring together
sensory and perceptual aspects, because taxis is not such a complicated
pattern of behavior.

2. “It would require a great deal of effort to build a computer model that
reflected the real situation well enough to make strong claims that the
mechanism actually works” (Webb) (1994, p.53).

3. In a simulation, the correct functioning of a model may be result of ide-
alized conditions: the condition of the model object being a subset of the
real object would not hold.

Webb articulates her ideas about robotic modelling in biology in a later pa-
per. Webb (2001) addresses the nature of models in biology, and the dimensions
which should be used for classifying and evaluating embodied models!®. She ar-
gues that for the inclusion of a work under the rubric “biorobotic modelling”,
the following criteria should be satisfied:

14Webb actually attempted to build a computer model, and is speaking in the light of this
experience.
5For a general review of biorobotics from the same author see Webbl (2000).
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e It must be robotic, i.e. “[t]he system should be physically instantiated and
have unmediated contact with the external environment” (Webb, 2001,
p.1037).

e It must be biological, i.e. “[ojne aim in building the system should be to
address a biological hypothesis or demonstrate understanding of a biolog-
ical system” (Webb, 2001, p.1037).

This excludes disembodied work, where the environment and the animal are
simulated on a computer, and behavior-based approaches in Al, where there
is no attempt made to compare the performance of artificial agents to that of
natural agents. Nevertheless, one important aspect is shared with the behavior-
based approaches: “It is the engineering requirement of making something that
actually works that creates much of the hypothesis testing power of robotic
models of biological systems” (Webb) 2001, p.1046). The aim of biorobotics
is to build systems that function, and this makes up the justifying power of
biorobotics. Relevant here is the problem of accuracy and technical means: the
current technology for sensors and actuators does not provide devices which
allow the precise reproduction of natural behavior. [Webb (2001)) argues that
instead of working on one precise model that can not be built due to technolog-
ical constraints, more will be learned by building multiple relatively imprecise
models that address different aspects of a phenomenon.

Another important parallel between biorobotics and behavior-based Al is
the role of abstraction in the two methodologies. In behavior-based Al, simpli-
fication of a problem involves accounting for certain abilities that are exhibited
by the natural agent through other means — such as using a speech processing
system known to be unrealistic — instead of assuming ideal conditions, such as
perfect environmental conditions and sensory devices. Certain kinds of ideal-
ization are impossible anyway if one follows an embodied approach: physical
phenomena such as friction and momentum effects are outside any influence of
the researcher. Webb! (2001) points out that this is also the case in biorobotics:
“What does distinguish abstraction in biorobotics from simulations is that it
usually occurs by leaving out details, by substitution, or by simplifying the rep-
resentation, rather than by idealizing the objects or functions to be performed”
(p.1047).

2.2.1 Randal D. Beer

Randal D. Beer has also proposed an alternative view of Al, a view which has
many parallels with the work of Brooks and Agre. What Beer’s work shares with
these efforts is the idea that “the appropriate patterns of behavior emerge from
the dynamic interaction between an intelligent agent and its environment. The
ability of its internal control mechanisms to somehow mirror the structure of its
external environment is irrelevant” (Beer, 1990, p.14). According to Beer, intel-
ligence is adaptive behavior, and “[a]ll that is required for adaptive behavior is
a structural congruence between the dynamics of an intelligent agent’s internal
mechanisms and the dynamics of its external environment” (Beer, 1990, p.14).
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Giving up the principal methodology of symbolic AT used to model intelligent
agents, namely the symbolic modelling of expert performance in restricted do-
mains, opens up two problems: what should one model if one is to abandon the
abstracting method of symbolic Al, and with which tools and at which level, if
not with explicit world models and representation?

Beer offers a new methodology he calls computational neuroethology, which
is “the computer modelling of the neural control of behavior in simpler whole
animals” (Beer), 1990} p.17), as a solution to these two problems. The working
assumptions of computational neuroethology are as follows (Beer) 1990, p.17):

1. The ability to flexibly cope with the real world is a defining characteristic
of intelligent behavior, and more fundamental than conscious deliberation.

2. Adaptive behavior derives from a structural congruency between the dy-
namics of an intelligent agent’s internal mechanisms and the dynamics of
its external environment.

3. Modeling the neural control of behavior in simpler whole animals will
provide insights into the nature of the dynamics required for adaptive
behavior.

Therefore, one should model complete agents instead of specific capacities, and
the models should be at the neural level. Beer chooses as a subject for his model
an insect that’s similar to the American cockroach, Periplaneta americana, and
names this simulated animal the Periplaneta computatriz, the computer cock-
roach.

The Periplaneta computatriz was first realized in a computer simulation,
which was “only complex enough to support the behaviors of interest” (Beer,
1990, p.48). The control mechanism was based on a neural network implemen-
tation in the simulated model. Later on, a similar mechanism was implemented
on physical machinery. A model of walking in insects for six-legged robots with
2 and 3 degrees of freedom was developed by Beer and his colleagues at the
Case Western Reserve University. One of the aims of their research was to im-
plement and test different hypotheses about the nature of walking in insects and
the emergence of different gaits'®. Although the mechanism in the simulated
and the embodied models is very similar, the controller for the embodied model
is not so much biologically inspired, not relying on biological mechanisms such
as inhibition and stimulation. Here the mechanism for the embodied model will
be explained: the essence of the two systems is the same.

Beer claims that using a centralized system to control the legs of a hexapod
robot results in heavy computational load, which would be unrealistic for the
simple nervous system of a cockroach. Therefore they have built a distributed
system which relies on separate processors for each leg and simple communi-
cation channels between these processors. A leg can at any time be either
in swing movement or positioned on the ground, which is called stance. The
dynamics is centered around two kinematic parameters, the anterior extreme

16 A gait refers to a pattern of leg movement.
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Figure 2.4: Influence of different mechanisms on the legs (adapted from [Espen-
schied et al. (1993)).

position (AEP) and the posterior extreme position (PEP). These parameters
control the switch from swing to stance and vice versa: when a leg reaches the
PEP, it switches to swing, and when it reaches AEP, it switches to stance (see
Espenschied et al| (1996) and Espenschied et al.| (1993) for detailed explana-
tions of the mechanisms). The leg processors influence each others’ PEP and
AEP values: Figure 2.4/ shows the connections between the processors and the
directions of the influences of each leg on the others. Numbers 1, 2 and 5 refer
to different mechanisms with which leg processors influence each other. The
arrows show the directions of these influences, where the arrow originates from
the sender of an influence and ends at the receiver. The mechanisms functions
as follows:

e Mechanism 1 shifts the PEP of the receiving leg backward.
e Mechanism 2 shifts the PEP of the receiving leg forward.

e Mechanism 5 shifts the PEP of the receiving leg forward. While mecha-
nisms 1 and 2 are step functions, mechanism 5 is a ramp function.

These simple mechanisms and connections were enough for the robot to exhibit
three different insect-like gait patterns: “As the speed is varied, a continuous
range of statically stable insect like gaits are produced ... The gaits range from
the wave gait to the tripod gate.” (Espenschied et al., [1993| p.460).

Beer and his colleagues have also carried out lesioning studies of the same
model. When a cockroach loses a leg or a neural connection is severed, it can
still exhibit coherent gait patterns: this is not the case in centrally controlled
systems, where the loss of one unit or connection can effect the functioning of
the whole system. The hexapod robot exhibits graceful degradation, in that the
severing of a connection does not cause catastrophic failure: “The robot walks
effectively throughout the range of speeds despite the removal of any single
inter-leg influence. By effective locomotion, we mean that the robot walks in
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a gait that is primarily statically stable but may experience occasional brief
periods of static instability” (Espenschied et al., 1993| p.461).

The designers of this hexapod robot state that they “tend to err by including
more biology than may at first appear to be strictly necessary. The reason for
this is straightforward: it almost always pays oft” (Beer et al.l 1997, p.33). The
first source of inspiration for their work comes from biological studies, and the
results of experimental studies on animal behavior and biology are integrated
into the design and testing of a robot. This is one of the reasons why they
choose insects as the object of their model: invertebrates display complex goal-
oriented behavior, and the study of their nervous system is for most cases more
feasible than it is for vertebrates. Nevertheless, there are many cases where
the biological knowledge is not enough and the designer has to fill in the gaps:
“Unfortunately, much of the artificial insect’s nervous system is rather ad hoc.
While some portions of it are based directly upon neurobiological data, many
other parts were hand-designed” (Beer, 1990, p.167).

2.2.2 Some remarks on Connectionism

A question frequently stated asks for the difference between what is called con-
nectionist Al, which appears also under the names of neural networks and paral-
lel distributed processing (Smolenskyl 1988; Rumelhart and McClelland), [1986)
and New AI. Although connectionist modelling is claimed to be the alterna-
tive in cognitive modelling to classical symbolic models, the two methodologies
have in essence a lot in common. Among these commonalities, the most im-
portant are the use of micro-worlds, and the existence of these neural nets in
a biological vacuum (Cliff, 1991). What is meant with a biological vacuum is
a disconnectedness from the biological environment which defines a living be-
ing, the independence from the physical bases a biological organism would be
situated in. This vacuum leads to the neural nets facing the same problem as
the symbolic systems, namely the symbol grounding problem. Computational
neuroethology promises to study intelligent beings as complete organisms and
coupled to their environment. Therefore, it appears to be the more promising
approach at the biological level, when compared to connectionism.
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TINAH Experiments

In the second chapter, outlines of biorobotics and behavior-based Al have been
given. These research programs promote using concepts from biology and ethol-
ogy in the design of robotic systems. The major difference between them is in
the emphasis they put on the accordance of the borrowed concepts with ex-
perimental methods and evaluation. In this chapter, a research program that
has been proposed as a combination and possible cognitive scientific mixture of
these two approaches, comparative cognitive robotics (from here on CCR), will
be explained. The author has also taken part in a a project that applied the
framework of CCR to a concrete study of animal learning. The main outlines
and results of this project will also be presented.

3.1 Comparative Cognitive Robotics

Though very successful, the approaches of biorobotics and computational neu-
roethology also have some important limitations. One problem is the level at
which they are operating. These two methodologies both model behavior at
the neurobiological level. However, as we saw in the section on computational
neuroethology, our knowledge of the biology of animals is very limited, even for
very simple animals such as cockroaches: Beer had to fill in gaps in the neu-
robiology, albeit with neurologically plausible assumptions, although he chose
cockroaches for their simplicity in the first place.

Due to the nature of biological data, the models are only applicable to one
species or a small group of species. In the examples given in the second chap-
ter, these species and behaviors are navigation in the desert ant and gaiting
behavior in a certain species of insect. Moreover, only aspects of sensory-motor
coordination are studied, which imposes severe restrictions on the methodology
from a cognitive scientific point of view. This kind of research reveals little
about human cognition, even if we were to gather a huge amount of such data.

The main focus of research in biorobotics is on fixed behavioral patterns
which show little or no adaptation and learning (e.g. the mechanism to coor-
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dinate the six legs in a stick insect is rather fixed, and only certain parameters
have to be updated in the orienting behavior of Cataglyphis). The explanatory
level is also a neural one. Because explanations on this level are not available
for more complex phenomena, especially phenomena that involves autonomous
learning and adaptation, one has to stick to a narrow range of rigid phenomena
in a limited number of species. Hence, what is needed is an approach which
allows studying behavioral mechanisms that can be found in many different
species. These mechanisms should go beyond sensory-motor coordination, be
described on a level of explanation other than the neuronal level and relate to
the central phenomena of adaptation and learning.

Comparative Cognitive Robotics (Johnl (1998); lJohn and Werner (2004al);
John and Werner (2004b)) is a research framework that “aims to understand
better how living beings learn by imitating these with animats and robots, in
this process orients itself to the empirical findings of the psychology of learning
and memory, and concentrates on such phenomena whose universality has been
proven by comparative psychology” (John, 1998, p.88). CCR aims to retain
the strengths of biorobotics stemming from its empirical methodology, while
getting beyond its weaknesses by basing the research on a more cognitively-
oriented foundation. As collaboration partner in the construction of autonomous
agents, CCR takes comparative psychology instead of biology. Instead of mere
sensory-motor coordination, theories of learning and adaptation are the target
of modelling. Comparative psychology aims at finding common mechanisms of
learning and adaptation in a wide variety of species which can be as different as
monkeys, pigeons, dolphins, rats, and even bees and humans. This research gives
insight into possible evolutionary steps in the development of complex cognitive
abilities as well as into mechanisms which seem to be common to many — if not
all —species (cf. Domjan (1998); McLaren et al.l (1994); McPhail (1987); Roitblat
and von Fersenl (1992)); [Shanks (1995)). Focusing on comparative psychology
rather than biology provides a horizon beyond behaviors that are limited to a
specific species and have little to offer on learning and adaptivity. This also
permits independence from the neurological level of explanation. The focus is
rather on psychological, yet “subsymbolic” models of behavioral control.

In implementing empirical models in robotic agents and testing them in the
same environments with the natural agents, a most parsimonious approach is
taken: the model at the start should build in as little designer knowledge as
possible. If the robot model and the animal show similar adaptive behavior
under similar conditions, the model is successful and can be extended to cover
more phenomena. Otherwise, the model is modified in again a parsimonious way,
and is subjected to the same testing conditions. Another important point is that
open questions in the design process should be turned into empirical questions
and answers for these questions should be sought in the same experimental
framework with the natural agents. The environments for the robot and animal
experiments are ideally standard learning environments (e.g. experiments done
in a Skinner box). Such environments allow the examination of the details of
adaptive behavior in animals under experimentally controlled conditions, and
at the same time verification of the robot’s behavior under similar conditions.
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To summarize, the main features of comparative cognitive robotics are as
follows (for a detailed account see Johnl (1998)):

1. As a collaboration partner in constructing autonomous agents, compara-
tive psychology of learning and adaptation is chosen.

2. Focus is on those phenomena of learning and adaptation that can be found
in a wide variety of species.

3. Empirical research with the model animal and the construction of the
robot model work hand in hand. Work on the robot model inspires new
experiments and new theories, and the empirical findings are used to up-
date the robot model.

4. The model animal and the robot model are tested in the same or similar
environments commonly used in comparative psychology, with the same
or similar means of analysis. The match between those measurements is
taken as an indication of the success of the model.

The rest of this chapter will report on a project in the framework of CCR that
was carried out at the University of Osnabriick. The project, named EROSAL
(Empirical RObot Study of Animal Learning) had the aim of studying theories
on categorization, using as the resource for empirical data two groups of exper-
iments carried out by Christian Werner of the C. and O. Vogt Brain Research
Institute at the Heinrich-Heine-University of Diisseldorf. The methods and re-
sults of these experiments (referred to as the Diisseldorf experiments in the rest
of the text) will be explained in the following section. Afterwards, the EROSAL
project will be expounded.

3.2 The Diusseldorf Experiments

The experiments that we aimed to replicate in our project with a robot model
studied the discrimination capability of hens (genus Gallus gallus fd) in two
different tasks (Werner and Rehkamper) 2001), 1999; Werner et al., 2004, 2003;
Werner, [1999)*. These simultaneous discrimination tasks involved two different
sets of stimuli. The experimental environment was a quadratic Skinner box
with three Plexiglas pecking discs. The visual stimuli were projected onto the
pecking discs using a slide projector. The tasks involved two stimuli, so one
of the pecking discs (the middle one) was obstructed with black cardboard.
Positive reinforcement in the form of food was given to the hens using a food
hopper. There were two light sources inside the conditioning chamber: a white
bulb (the house light) and a red one (the feedback light). The house light
was turned off to signal negative reinforcement, whereas the feedback light was
turned on to signal the presence of food after a correct discrimination by the

1Birds are traditionally used in experiments involving visual stimuli, due to their superior
visual capabilities. In experiments involving olfactory and gustative stimuli, in contrast, rats
and mice are traditionally used as experimental animals.
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Figure 3.1: The experimental environment in which the chickens and the robot
were tested.

hen. During the experiments, the hens were neither food nor water deprived.
Figure 3.1l shows the experimental setup from outside, and Figure 3.2 shows the
hen and the apparatus inside the box.

3.2.1 The first group of experiments

The set of stimuli used in the first group of experiments consisted of opaque,
black geometrical figures of equal area. These stimuli varied along the dimen-
sions given in Table[3.1. All possible combinations of these variations were used,
which led to 54 different stimuli. Figure [3.3/ shows some sample stimuli from
these experiments.

The figures are integral compounds, because each of the dimensions used
contributed to the form of the figures. Integral compounds are stimuli “in which
the perception of each element is influenced by each other element and in which
the elements resist individual analysis by the subject” (Riley, 1984, p.335). It
was known that hens preferred rounded objects; therefore, in this first set, the
chickens learned to discriminate between stimuli with sharp corners and those
with round corners. The aim of the first group of experiments was to “investigate
whether chickens exposed to a discrimination and categorization problem were
able to adapt their pecking behavior to a single dimension only, or whether they
used additional cues which were uncorrelated with reinforcement” (Werner and
Rehkémper, 1999, p.30).

The stimuli were distributed elaborately to avoid any unwanted effects. The
distinction the hens had to learn was between sharp and round corners. Pecks
on the sharp cornered shapes were rewarded with food, whereas pecks on the
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Figure 3.2: The hen and the apparatus inside the box.

Name of Possible feature values
dimension in this dimension
Corners Rounded | Sharp
Basic square rectangle | rectangle
figure (1:1) (1:1.6) (1:2.8)
Sloped side | horizontal | vertical all
Slope 10° 25° 45°

Table 3.1: The variation of the stimuli used in the first set of experiments with
hens.

\\.-

Figure 3.3: Samples from the first set of visual stimuli used in the chicken
experiments.
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round-cornered shapes were punished by turning the lights out, which is aversive
for hens. The stimuli were divided into 27 pairs, with each pair consisting of
a figure with rounded corners and another with sharp corners. These 27 pairs
differed in all four dimensions. The stimuli were further divided into three sets
consisting of nine of these pairs. This division was done such that in each
group, the values of the additional features of the stimuli with sharp corners
were presented an equal number of times.

Fighteen hens were used to carry out the experiments, of which one died
during the study. Most of these hens had already taken part in an earlier
experiments, albeit with different kinds of stimuli. The ones that did not have
experimental experience went through an auto-shaping procedure that ran as
follows:

Phase 1: Getting acquainted with the Skinner box

e Food was put around the food hopper to attract the hen’s pecking.

e Light on the pecking discs (without patterns) was switched on per-
manently.

e The food hopper was opened for 10 seconds, followed by 20 seconds
of pause with a closed food hopper, then it was opened again, etc.

Phase 2: Autoshaping

e 15 seconds of pause was followed by the food light switched on for 10
seconds.

e If the hens pecked during this interval, the food hopper was opened
immediately. Otherwise, it was opened after the interval each time
for 5 seconds.

e Afterwards the pause started again.

Phase 3: The time parameters were adapted step by step to the ones used in
the experiment.

3.2.1.1 Experiment 1: Successive training

In the first experiment, the first group of nine pairs from the three groups of
stimulus pairs was used. Each stimulus pair in this set was presented until
the subject reached a certain criterion of performance. The learning criterion
for a hen’s successfully finishing the experiment was either making at least 80%
correct choices in each of five consecutive sessions or making at least 90% correct
choices in three out of five consecutive sessions.2 The order of the presented
pairs was different for each hen (pseudo-randomized and balanced), and the
presentation of the reinforced stimuli (i.e. stimuli with sharp corners) on the
left or the right pecking disc was balanced.

2 A session refers to the presentation of all nine stimuli, and the presentation of one stimulus
pair is referred to as a trial. SeeWerner and Rehkamper (1999) for a more detailed explanation
of the experimental procedure.
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The experiment was stopped when the last of the seven fastest learners
among the hens reached the learning criterion, which took four months. There
was a large variability in the learning ability and performance of the hens.
Among the eighteen hens, seven learned to discriminate all nine pairs, one hen
eight pairs, one hen seven, one hen four, one hen two, and two hens were unable
to exhibit any discrimination behavior. The quickest learner needed six sessions
in order to learn to discriminate all nine pairs, whereas the slowest among the
seven fastest learners needed 32 sessions. There were two interesting effects that
were observed. One was the speeding up of learning through consecutive trials.
Learning became faster during the sessions, from around eleven sessions which
were needed to learn the first stimulus pairs to about seven for the last: this
can be taken as an indication of generalization. Another effect was drops below
chance performance in the first session following pair exchanges. If the hens were
not paying attention to the integral dimensions, it would be expected that they
start the discrimination task at chance level. That they perform worse could be
due to their picking an irrelevant cue. The aim of the second experiment was
to test whether the hens could attend selectively to a single dimension.

3.2.1.2 Experiment 2: Simultaneous training

In this experiment, the fastest learning seven hens from the first experiment were
used, in order to speed up the experimental procedure. In order to avoid the
hens switching from one disc to the other during the presentation of a pair, they
were given positive reinforcement if they pecked three times on the correct slide.
In the training phase, each pair from the first stimulus set was presented three
times, and in case of an incorrect choice correction trials were inserted, which
presented the same stimulus pair once more. In contrast to the first experiment,
the pairs were presented in randomized order. At the end of the training phase,
the hens had learned to peck on the stimuli with sharp corners (see Figure [3.4).
The training phase was followed by a testing phase, in which it was tested
whether the hens could generalize their pecking behavior to new stimuli. For
each session, the nine stimuli of the first group of nine were presented three
times, plus one pair from the second group of stimuli, again three times, mixed
(pseudo-randomized, balanced) among the familiar stimuli. Nine sessions per
test were carried out. In each session, for the new stimuli, pecking had no effect
for the first presentation, but only for the second and third presentations. The
inclusion of new stimuli was limited to one new pair per session. There were
two reasons for this. One was avoiding the confrontation with a lot of new
stimulus material and a possible drastic decrease of performance. The other
was to assure that natural variations of performance between days do not have
drastic effects on the measurements. The hens discriminated the new stimulus
pairs as well as the ones they had already been trained with. Around six pecks
were made on sharp-cornered figures, and two on rounded ones. The number
of pecks on different kinds of stimuli did not differ for familiar and unfamiliar
pairs. One important result was that there was no indication of an effect of set
size.
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mean number of pecks

Dr|:r|-|1r|'||...|....|:.1u|1...|

5 10 15 20 25 30

a number of presentations

Figure 3.4: Mean number of pecks and SE for sharp-cornered (filled) and
rounded (unfilled) figures in the second half of the training period (adapted
from [Werner and Rehkamper| (1999)).

3.2.1.3 Experiment 3

The aim of the third experiment was to analyze the performance of the hens in
relation to the other dimensions. In this experiment, all the stimulus pairs from
the first and the second sets of stimuli were presented, and in the test phase
the hens were tested for their performance with the stimuli from the third set.
Similar to the second experiment, one pair from the third set was presented
randomly placed between nine pairs from set one and nine from set two. The
discrimination performance of the hens was very similar to that in the second
experiment: in the training phase, the number of pecks on the cornered stimuli
was around six, whereas the number of pecks on the rounded ones was around
two. In the testing phase, the hens demonstrated the same discrimination be-
havior with the unfamiliar stimuli from the third set.

Although these results show that the hens have learned to discriminate ac-
cording to the significant dimension, in this case whether the corners were sharp
or rounded, a number of findings cast doubt on the classical view on classifi-
cation. Statistical analysis revealed that for each individual hen, at least one
other, “irrelevant” dimension significantly influenced the pecking behavior, al-
though the stimulus material and the experiment was constructed such that
only the distinction of round-cornered vs. sharp-cornered stimuli could serve as
a predictor for reward. This was true also on the level of stimulus pairs. Not all
stimulus pairs were discriminated equally well, although each time, one sharp-
cornered and one round-cornered stimulus was paired. In addition, there was
an overall decrease of discrimination performance over the sessions, depending
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Figure 3.5: The results of the PCA. Filled circles are exemplars of the reinforced
category, whereas empty circles are members of the non-reinforced category.

on how many stimulus pairs had been trained.

In order to test whether the configural effect of the stimuli was a result of
learning the configural cues as category-relevant information or a result of the
memory retrieval processes, a new experiment was carried out, in which the same
stimuli were formed into new pairs (Werner and Rehkédmper), 2001). Already
on the first presentation of the new pairings, the hens were able to discriminate
the two types of stimuli equally well, which is a strong indication that not
the pairs but the individual exemplars were learned beforehand. In order to
test the authors’ ideas about the representation of category information by the
hens, the number of pecks by the hens on the different pecking discs was taken
as data and statistically evaluated. A principal component analysis (PCA)
was done to find out which components influenced the pecking behavior, and
to which extent. This analysis revealed that the corner dimension (i.e. whether
the corner was sharp or rounded) was responsible for 54% of the variance, which
made it the most important component. The other components could be used
to order all stimuli according to the degree to which they lead to pecking or
non-pecking (component loading, transformed by Fisher’s Z transformation).
On a one-dimensional axis, stimuli which would elicit pecking behavior were
grouped more to the right, stimuli which would elicit non-pecking were grouped
more to the left. The results are shown in Figure [3.5.

These theories would in this case predict different distributions of the com-
ponents. Next, the predictions made by different theories will be explained, and
compared to the actual results.

3.2.1.4 Feature-based theories

Theories that take a feature-based perspective partition stimuli into features
that correspond to natural language terms. Category membership is an all-or-
none quality, and is defined by the possession by a stimulus of a set of features
or combinations of them (Pearcel, [1994). Each exemplar of a given category is
equally representative of the category. The expected distribution of the exem-
plars would then be one of random variation, and the mean of the exemplars
in the relevant dimension would correspond to the membership criterion. The
predictions of the feature theory are presented in Figure 3.6l



52 CHAPTER 3. TINAH EXPERIMENTS

0106080100 00 00000 ¢

*non-reinforeed “reinforced

Figure 3.6: The prediction of a feature-based approach how instances would be
separated.
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Figure 3.7: The prediction of a prototype-based approach how instances would
be separated.

3.2.1.5 Prototype-based theories

These theories assume that a prototype is formed for each category, which is
the most representative exemplar of that category.What determines category
membership is similarity to this prototype (Posner and Keelel, 1968} [Rosch)|
1975). A prototype-based account in this experiment would produce prototypes
that are symmetrical along the significant dimension, because the dimensional
structure of the reinforced and non-reinforced stimuli are the same except for
the significant dimension. The center would be the point of lowest typicality
for both components. See Figure [3.7/ for the predictions of a prototype-based
theory.

3.2.1.6 Exemplar-based theories

3n exemplar-based learning mechanisms, stimuli are considered to be complete

configurations Medin and Schaffer (1978); Nosofsky (1984). In an exemplar-
based account, no assumptions are made about the importance of any dimen-
sions for category membership. The distribution of the exemplars depends only
on their association with the selective responses that correspond to the cate-
gories (in this case, approach vs. avoid). It is possible that the exemplars are
mixed with each other. See Figure [3.8 for a depiction of the predictions of an
exemplar-based account. A comparison of Figure 3.5 and Figure [3.8 shows that

31
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Figure 3.8: The prediction of a feature-based approach how instances would be
separated.

among the predictions of the categorization theories, the exemplar-based ac-
count gets the closest to the experimental findings. The one-component model
of categorization according to exemplar theory matches the results of discrim-
ination of categories on the basis of the raw data on pecking rates....One can
conclude that exemplar theory is more suitable for explaining chickens’ discrim-
ination of well-defined categories of multi-dimensional geometrical figures than
either feature or prototype theory.

The authors conclude, regarding the first group of experiments, as follows:
“we would interpret our results as indicating that chickens represent stimulus
arrays as a whole...and that they might adapt their behavior to elements or
dimensions of these representations secondarily” (Werner and Rehkamper, 2001,
p.37).

3.2.2 The second group of Diisseldorf experiments

The first group of experiments explained above used only integral compound
stimuli. In contrast to integral stimuli, one can speak of separable compound
stimuli, which are defined as stimuli that can be decomposed. Decomposing
means “that the subject performs operations on some property of the stimulus
without reference to other properties” (Riley, 1984, p.335). In the literature of
category acquisition, one can read of two different kinds of processing that cor-
respond to these two kinds of stimuli: analytic vs. holistic processing. Analytic
processing is assumed to take place with separable compound stimuli, wheres
holistic processing is assumed to be the primary method of interacting with
compound stimuli. Although an experiment that uses integral stimuli allows
one to evaluate different theories of categorization, it is impossible to examine
whether the claim for two kinds of processing is true. The aim of the second
group of experiments was to test whether the chickens processed stimuli dif-
ferently, depending on whether they were separable or integral (Werner et al.
2003)).

Analytic processing Theories that are based on the analytical processing of
stimulus claim that when a compound stimulus is presented to the animal, the
stimulus is decomposed into its components (in the case of the stimuli used in
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Figure 3.9: The stimuli used in the second group of experiments. LEFT: Dimen-
sional stimuli consisting of one dimension, color (red or green) or line orientation
(horizontal or vertical). RIGHT: Compound stimuli. TOP RIGHT: Separable
compound stimuli. BOTTOM RIGHT: Integral compound stimuli.

this experiment, dimensions such as sloped side, slope, basic figure and corners)
and then the stimulus as a set of such components and the reinforcement are
the sources of learning (Cook et al., 1992 Leith and Maki, [1977]).

Holistic processing Theories that assume holistic processing claim that a
compound stimulus is accepted to the learning system as a complete configu-
ration, without being analyzed into smaller parts. The stimulus as a complete
pattern enters the learning process. In this kind of processing, one does not
have to assume features that are extracted (Grant and MacDonald) 1986} [(Cox
and D’Amato, 1982).4

The second group of Diisseldorf experiments used both integral and com-
pound stimuli, in order to be able to find out whether hens process them differ-
ently. The stimuli dimensions were line orientation (horizontal or vertical) and
color (red or green). The separable stimuli consisted of black lines on a colored
background, whereas the integral stimuli consisted of colored lines (red or green
and horizontal or vertical). The stimuli can be seen in Figure [3.9.

3.2.2.1 Experiment 1

If it is the case that chickens process integral and compound stimuli differently,
it is expected that animals have more difficulty attending to the dimensions of an
integral stimulus than attending the dimensions of a compound stimulus. In this
experiment, it was tested whether chickens that learned to discriminate between

4See [Slomanl| (1996) for a review of the literature of the same distinction in humans and
an argument for the existence of two systems of reasoning in humans, one analytic and the
other holistic.
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color and line orientation transferred differently to integral and compound stim-
uli made up from the same dimensions. The experiment was carried out with
nine hens which were experimentally naive except for one hen that had already
taken part in the first group of experiments. The stimulus material was accepted
to be different enough not to effect performance in this experiment. The hens
were, as in the first group of experiments, neither food nor water deprived. The
experimental setup was exactly the same as in Werner and Rehkédmper| (1999),
explained above. For a more detailed explanation of the stimulus material and
the experimental procedure see Werner et al. (2003)”. The separable compound
stimuli were a black line on a colored background (designated as SCLO, which
stands for Separable Compound Line Orientation; top right in Figure3.9). The
integral compound stimuli consisted of a colored line, either red and horizontal
or green and vertical, on a transparent background (designated as ICLO, which
stands for Integral Compound Line Orientation; bottom right in Figure3.9). In
order to acclimate the hens to the chamber, they went through an autoshaping
procedure as in the first group of experiments.

Hens were first trained to discriminate between the dimensional color and
line orientation stimuli. Four of the hens were reinforced for choosing red and
horizontal, and five were reinforced for green and vertical. Each hen was trained
for twenty trials daily, where ten trials were allocated for color stimuli and
another ten for the line orientation stimuli. The criterion for ending the training
phase was reaching 90% correct discrimination in one session for both color
and line orientation stimuli. Some hens had difficulty learning to discriminate
the line orientation stimuli — these hens were trained only with line orientation
stimuli until reaching the 90% criterion before carrying on with the other phases
of the experiment.

The transfer phase followed the training phase. In the transfer phase, inte-
gral and separable compounds were exchanged for dimensional stimuli. In the
training phase, hens that had been reinforced for two particular elements were
reinforced for choosing the compounds, either separable or compound, of the
same elements. For example, a hen that was reinforced for choosing red and
horizontal dimensional stimuli was reinforced in the transfer phase for choosing
horizontal black line on a red background (separable compound) or horizontal
red line (integral compound).

The hens learned to discriminate color faster than line orientation in the
training phase. In the transfer phase, performance was better for separable
stimuli than integral stimuli. These results are in accord with the hypothesis
that dimensions making up a separable compound are easier to attend to than
those of an integral compound. However, the authors argue that this could be
due to a difference in the processing of similarity, e.g. more efficient processing
of color compared to line orientation. If this is the case, color stimuli would
be more similar to SCLO stimuli, because the overlapping color patch is much
bigger.

SWerner et al. (2003) presents, in addition to the experiments, a mathematical model. This
model will not be explained here.
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3.2.2.2 Experiment 2

In this experiment, the hens were tested for the reversal of one dimension,
while the other was reinforced as before. In the test phase, transfer to non-
reversed compound stimuli was tested. The aim here is to test for a separation
of dimensions associated with processing of SCLO compared to ICLO. This
experiment included a new set of stimuli where the lines were two times thicker
(designated SCTLO and ICTLO), in order to increase the area covered by color
in ICLO (colored lines on transparent background) and decrease it in SCLO
(black line on colored background).

In the training phase, three hens from the first experiment were first trained
to criterion with the color reversed compared to the first experiment, while
the reinforced line orientation remained the same. Afterwards, the transfer to
compounds was tested, with the reinforcement contingency as in Experiment 1,
i.e. not reversed. Each type of compound stimulus (two combination rules and
two types of line thickness) was presented randomly for ten trials, until the hens
reached criterion. This was followed by another dimensional training phase, this
time with the line orientation reversed. A second transfer training followed this,
whose reinforcement contingencies again remained unchanged. The reversal of
line orientation and color dimensions, and the subsequent testing for transfer,
was done three times in total.

The results revealed that for the stimuli with thicker lines, there were sig-
nificant fewer errors for ICTLO compared to ICLO. This is in accord with the
assumption that the size of the color patch has a significant role in a similarity
decision. The reversal of color in the dimensional training phase led to signifi-
cantly more errors for SCLO than for ICLO. This result is important, because
it contradicts the predictions of an analytic theory of processing. If the hens
processed the separable stimuli analytically, they should have made fewer errors
with separable stimuli, because the learning process leading to an adequate re-
sponse would simply have to consider the feature that is still reinforced after the
reversal, and dismiss the other features (see Leith and Makil (1977)). A holistic
processing account, in contrast, would not have any difficulty accounting for this
result. After the reversal of line orientation, more errors were found for ICLO
than for SCLO. Additionally, the number of errors after each reversal showed a
continuous decrease. The results can be seen in Figure 3.10.

3.2.3 Evaluation of the Diisseldorf Experiments

The first group of experiments, which used only integral stimuli, provided proof
for doubting the feature view of categorization. Statistical analysis revealed
that, although the reinforcement was controlled strictly by just one dimension,
hens were attending to irrelevant dimensions too. Furthermore, the results of
the principal component analysis showed a distribution that could be best ex-
plained by an exemplar view of categorization. The second group of experiments
provided proof for the claim that one does not need to assume different kinds of
processing for separable and compound stimuli. Traditionally, separable com-
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Figure 3.10: The results of the reversal experiments. LEFT Errors to criterion
for successive color reversal trials. RIGHT Errors to criterion for successive line
orientation reversal trials.

pounds are accepted to be processed analytically, and integral compounds are
accepted to be processed holistically. In the second experiment, the combina-
tion rule of the compound stimuli (integral vs. compound) was not sufficient
to predict transfer after reversal. The dimension that was reversed interacted
with the combination rule to determine the salient dimension in the compound.
These results point to a holistic processing of both kind of stimulus, integral
and compound, with an exemplar-based categorization system.

3.3 The EROSAL Project

The CCR framework was pursued in a one year project at the University of
Osnabriick in the Winter and Summer semesters 2002/2003 (Deiwiks et al.
2003). The project was called EROSAL, which stands for Empirical Robot
Study of Animal Learning, and was for the partial fulfillment of the Cognitive
Science Master’s Degree at the same university. The students involved in the
project were, in addition to the author, Christa Deiwiks, Katerina Gergou,
Leonhard Lé&er, Riidiger Land, Sascha Lange and Jan Plate. As the name
suggests, our aim was to do an empirical study of animal learning using a robotic
model. The study was to be in the framework of CCR, which proposes that the
data produced by comparative psychological studies be taken as resources for
the construction of models. We therefore had to pick a study of animal learning.
We decided to work with Christian Werner and replicate the above explained
experiments.

There were a number of reasons for our choosing to work with Christian
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Werner. The most important among these was that the studies were on dis-
crimination learning and categorization, which are central subjects in the field
of cognitive science. The criteria for a good robot model put forward by the
framework of CCR, listed on p. 45, were met; primarily, the experiment did not
depend on an expensive and complex set-up, and we were able to meet the de-
mands of building the robot using relatively cheap resources. Last but not least,
we could rely on a collaboration between Christian W. Werner and our project
group. This gave us the possibility to get plenty of information on the informal
background of the experiment and about chicken behavior in general. It also
helped a lot in constructing the actual model and setting up the experiments.

3.3.1 The Main Idea

As we have seen in the Diisseldorf experiments, it is not necessary to assume
two different kinds of processing in order to account for the effect of the com-
position rule of a stimulus. An exemplar-based account is sufficient to explain
the experimental findings of these experiments. The aim of our project was to
build a robot model of the hens that would be able to carry out the same exper-
iments. The learning mechanism we wanted to implement assumed that there
exist similarity relations between dimensional and compound stimuli, which led
to transfer of learning from dimensional training to compound training. We also
believed that one of the effects that accounted for the results of the experiments
with the hens was the existence of differences in efficiency of processing between
dimensional stimuli, meaning that color is processed more efficiently than line
orientation.

3.3.2 The Robot and How It Learned

In order to construct an embodied model of the discrimination behavior of the
hens, we have built a robot that would operate in the same environment in
which the hen experiments were carried out. The robot was named TINAH,
an acronym that stands for This Is Not A Hen. The robot was built using
Lego Mindstorms™ which provides a versatile set of tools for building cus-
tom robots, although limited in complexity and rigidity. In addition to the
usual Lego building blocks, the Mindstorms™%kit provides various sensors and
electric motors, and an RCX (Robot Control X), a programmable brick with
a microprocessor. The RCX can connect to the sensors, such as touch sensors
and rotation counters, and drive the motors. The size of any program that
can run on a RCX is limited by the size of the on-board memory of 512 Kilo-
bytes. This is enough for simple programs, but the learning algorithm that
we have implemented, which will be explained below, requires a much bigger
memory. Therefore, we have opted for controlling the robot through the tower,
an infra-red transceiver that connects to a computer via the serial port and
communicates with the RCX. This way, we could control the robot by issuing
commands from the computer. We have built the robot using two RCX bricks
in order to provide for future contingencies, but only one of these bricks was
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Figure 3.11: The final version of TINAH, built using Lego Mindstorms™™.

used to control the robot. The robot is based on a synchro-drive, which can
move in all four directions without changing the orientation. The final form of
TINAH can be seen in Figure 3.11. In the figure, the webcam, which was used
to take pictures of the pecking discs, and the pecking mechanism are visible.

3.3.2.1 An Exemplar-Based Learning Algorithm

The learning algorithm that we implemented was an exemplar-based one.
Exemplar-based learning is a subset of lazy learning, which is a general term
for such machine learning methods as case-based, instance-based, and memory-
based learning % Lazy learning systems are characterized by the following three
aspects (Ahal, [1998)):

e They do not process their inputs until given information requests.
e They respond to requests by combining information from the stored data.

e They dismiss any temporary intermediate results created during problem
solving.

In contrast to lazy learning, eager learning signifies approaches which build
data structures when new input data is received, discard the new data and base
any responses on this data structure, which involves an abstraction from the
input data.” One can make a clear binary distinction among the lazy learning

SInstance-based, memory-based and exemplar-based methodologies in effect signify the
same thing, hence a distinction will not be made here.
"For a comparison of rule- and exemplar-based learning mechanisms see [Clark (1990).
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methodologies. On the one hand, there are systems that base any new cat-
egorizations and decisions on a certain subset of stored processes of decision
making that have already taken place, chosen according to their similarity to
the current case. Case-based learning, which is a widely applied methodology in
the field of expert systems, refers to such systems (Riesbeck and Schank) [1989).
In exemplar-based systems, however, when a decision has to be made, all the
exemplars in the memory are effective to the degree that they are similar to the
current case.

One of the most important aspects of an exemplar-based learning system is
the level of representation of the exemplars and the similarity measure, which is
closely related to the form of representation. In case-based reasoning, the repre-
sentation of the input data to the learning system already provides the necessary
separation into features®. Consequently, the representation of stimulus mate-
rial is decisive, and a high level representation serves to blur the distinction
between a rule-based and exemplar-based (or similarity-based) system (Hahn
and Chater), [1998). Another, and more important, consequence of such a sep-
aration is that the agent is supplied with the categories and correlations that
are significant, at least from the perspective of the designer. This is a breach
of the autonomy of the agent, because it feeds to the agent what it actually
should learn itself. What is or can be useful is provided to the agent from
the perspective of the designer when such a strict a priori partitioning of the
stimulus material is done. Also, it is not clear whether the partitioning by the
designer is actually the most efficient one. One more important point has to do
with the parsimony of the model. Avoiding the extraction of patterns by the
designer “also avoids the problem of fixing certain categories of features and
non-features, which leads to a more parsimonious theory” (Deiwiks et al., 2003,
p.17).

The learning mechanism employed in TINAH used exemplars that consisted
of the input data from the sensors, the action undertaken, and the reinforcement
that ensued. Therefore, an exemplar can be represented as a = [s¢, at,7]. There
was only one source for sensory data, which was the camera. A webcam was
used to gather images inside the box. These images were then stored in raw
form in exemplars. Raw form corresponds here to an image file that is encoded
in a certain color space. The available color spaces were RGB, XYZ and L*a*b*,
which are all designed by the CIE (Commision Internationale de I’Eclairage).
Among these, the L*a*b* space was constructed primarily to mirror the color
perception of humans as found in psychophysical experiments. Although there
is no data regarding color perception in hens, we picked the L*a*b* color space
for color coding, because it is the only space relevant to some kind of natural
data.?

8«In CBR, instances are typically represented using more rich symbol descriptions, and
the methods used to retrieve similar instances are correspondingly more elaborate’ (Mitchell,
1997).

98ee lvan Dam et _al.| (1997) for a detailed treatment of color spaces and Section 3.4.2 of
Deiwiks et all (2003) for detailed information on the processing of image information in the
TINAH robot.
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The similarity measure we employed was based on pixel-wise comparison.
The distance of two images I and I’, where the size of the images is N pixels
per M pixels, is the average Euclidean distance per pixel:

SN SM (2, y), I (2,y)]

LI'l=
|7| N‘M

(3.1)

In this equation, I(z,y) corresponds to the pixel with the cartesian coordinates
z,y in image I. The similarity of two exemplars is then the inverse exponential
of this distance:

d(I,I;) = e~ 111l (3.2)

This is an application of Shepard’s universal law of generalization (Shepard,
1987), which claims that in a psychological space, generalization gradients fall
exponentially with increasing distance. This psychological space should be
scaled with an appropriate metric, which in our case is the Euclidean distance
between images. ¥ The psychological space is color in our case, and the distance
metric is the Euclidean distance.

The exemplar-based learning algorithm developed for TINAH uses a set of
behaviors A = {aq,as,...,a,} as the set from which to choose one for execution.
In the case of TINAH, we had only two behaviors because the operation of
TINAH was limited to moving inside the box and pecking. This produced the
set of behaviors A = {move,peck}. The response strength R, of a behavior with
respect to a database F of exemplars, which consists of n exemplars, is then
calculated from the subset of exemplars that have the same behavior, as follows:

Ra = Zn: d([,]i) - Ty (33)

Here, I corresponds to the current image data retrieved from the camera, and
I; corresponds to the image data of the ith exemplar. The response strength
of each behavior is calculated in case a decision has to be made. Equation 3.3
makes clear that each exemplar in the memory takes effect in case of a deci-
sion. In order to calculate the execution possibility for each behavior in A, the
response strengths are weighted:
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This weighting process produces a probability distribution between 0 and 1, and
the sum of the execution probabilities of all behaviors is unity.

The selection of which behavior to execute, once the execution probabilities
are determined, is straightforward. A random number between 0 and 1 is drawn,

P(d' = PECK) = (3.4)

10Shepard (1987) also supports the validity of a Euclidean metric: “For unitary stimuli,
such as colors differing in perceptually integrable attributes of lightness and saturation, the
closest approximation to an invariant relation between generalization data and distances has
uniformly been achieved in a space endowed with the familiar Euclidean metric” (p.1319).
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and the PECK behavior is activated if its execution probability is less than the
random number. The selection process is so simple because there are only two
behaviors. A process for the selection of a behavior from among more than two
behaviors will be explained in Chapter 4.

3.3.3 The Results of the Experiments

The robot hen was tested in a set of training experiments that used the same
equipment and stimulus material as in the hen experiments depicted in Fig-
ure 3.1. Due to time restrictions and technical problems with the hardware, we
have been able to carry out only two training phases with our robot. These ex-
periments provided enough data to compare the model with the behavior of the
hens, but not enough to carry out elaborate statistical analysis as was the case
with the hens. The results of the training phases carried out with the robot can
be seen in Figure3.12. There are two important results that are worth pointing
out. The first is that the robot learns. In the first training phase, the robot
reached a correct pecking rate of 60%. In the second training phase, the correct
pecking rate increased to 70%, which meant 10% within-session learning. This
result shows a good accordance with the chicken data, which is 63% correct in
the first session and 71% correct in the second session (Werner et al., 2004)).
The second important result is that the robot learns color better than line
orientation. In the first session, the model reached 70% correct trials for discrim-
inating the correct color, compared to 50% for discrimination of line orientation.
In the experiments with chickens, the subjects pecked 82% correct for color dis-
crimination and 44% correct for line orientation. In the second session the rate
of correct pecks by the robot increased to 80% for color and 60% for line orien-
tation, whereas chickens improve their performance to 89% for color and 53%
for line orientation. The performance for color discrimination is still better than
for line orientation for both the robot and the chickens. In both trials, however,
the performance of the robot in line orientation is better than the hens. The
reason for this is probably the nearly perfect centering behavior that moves the
robot so as to have the pecking disc at the center of the image taken by the
camera. Ideally, this centering behavior should be acquired, like the pecking
behavior, through an autoshaping procedure, similar to the one for the hens.
These results are naturally very simple, and are not reason for early enthu-
siasm. Nevertheless, we have reason to expect that further experiments to be
carried out will reveal similarities with the hen data. This expectation is based
on a test run of the similarity measure on sample data in the form of pictures
taken with a camera. The similarity measure judged separable compound stim-
uli to be most similar to dimensional color stimuli: for example, a black vertical
bar on a red background, taken as a whole, are most similar to a purely red
stimulus. Taking the hypothetical case of a color reversal trial where the colors
that are reinforced are switched, this would mean pecking on the color that
was reinforced before. But as this color is not reinforced anymore, this reaction
will be counted as an error, for the robot as well as the chickens. For example,
pecking on a black vertical bar on red background will lead to an error, because
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Figure 3.12: The results of the training phases (adapted from [John and Werner
(2004a)). Top: Rate of total correct pecks. BorTOM: Rate of correct pecks for

color and line orientation stimuli.
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pecking on a purely red stimulus was reinforced before. Integral stimuli (colored
lines on transparent background), on the other hand, were revealed to be most
similar to dimensional line orientation stimuli: a green horizontal bar, for ex-
ample, is most similar to a black horizontal bar. Repeating the same behavior
for similar patterns will in this case not lead to an error, as the reinforced line
orientation was not reversed in color reversal. Thus, after color reversal, the
robot model will make substantially more errors for separable compound stim-
uli than for integral stimuli, just like the hens. The reverse was valid for the
case of a line orientation reversal. These results are grounds enough for opti-
mism for reproducing the empirical findings using only a simple type of holistic
processing.

3.3.4 Evaluation

The aim of the TINAH project and the robot model was to examine the claim
that assuming holistic processing was enough for accounting for the empirical
data from the experiments with chickens, by building an embodied model that
operated in the same environment with the subjects of the original experiment.
This was in accord with the Comparative Cognitive Robotics framework, ex-
plained in Section 3.1. To this end, one can count the project fairly successful,
keeping in mind the scarce data. The experiments are still in progress, and we
believe that even if we have to make major changes in the model, the results
will reveal valuable insights into the nature of visual processing in chickens.

Categorization without categories One of the most important character-
istics of TINAH has to do with the nature of the processing done by the learning
mechanism. The distinction between analytic and holistic processing has been
explained in Section [3.2.2: in analytic processing, the stimulus is decomposed
into features such as a horizontal line or a red circle, and these features than
enter into the categorization mechanism as an input pattern. This kind of pro-
cessing corresponds to a certain kind of model building in cognitive science and
AT, in which the designer builds in all the data structures and processing mech-
anisms that correspond to the entities to be learned or the phenomena to be
explained. The behavior of the designed agent is then evaluated in the light of
these constructs, as if they were not designed in the first place by the program-
mer or engineer. Smith! (1996) calls this an inscription error: “a tendency for a
theorist or observer, first, to write or project ... a set of ontological assumptions
onto a computational system ...and then, second, to read those assumptions
or their consequences back off the system, as if that constituted an independent
discovery or theoretical result” (p. 50, emphasis in the originial).This is not the
case for TINAH: although no categories, or programming constructs that could
correspond to categories were built in, the robot showed category acquisition.
We called this categorization without categories. The computational system does
not first search for certain distinguishing features in the camera input and then
map them onto built-in categories; each pattern is represented on itself (without
being matched to a node), and differential responding is a result of a comparison
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operation realized on the whole database. The categories that emerge are not
a result of a correct formulation by the designer of the agent, but a result of
the increasing number of exemplars and the effect of the reinforcement received
following the actions performed. That is, the interaction with the environment
is the main source of the categorization behavior. This guarantees two things.
The first is the autonomy of the agent: as has been pointed out earlier, auton-
omy means the reliance of an agent on its own existence, and the dependence
of categories solely on the situatedness of the agent leads to highly autonomous
behavior. The second important advantage of categorization without categories
pertains to parsimony. Computationally, our agent can be seen to be less par-
simonious than a program that uses features, which would be more efficient
and build smaller data structures. Because all the cases of pecking are stored,
TINAH ends up building considerably large databases. When regarded from the
point of view of how much designer knowledge is built in, however, our model
is more parsimonious than a feature-based model.

3.3.4.1 Criticism of CCR

The CCR framework restricts embodied models to empirical data gathered from
natural subjects. The behaviors relevant for the model are consequently those
which actually produced this data. In the case of TINAH, the only important
— one can even say scientifically extant in the context of this model — behaviors
were pecking and moving away, or not pecking. The unity of the organism
becomes a non-issue; instead of Brooks’ functional circle mentioned earlier, we
have a reduced environment similar to a microworld, e.g. to the blocksworld
The emphasis put on replicating empirical data also causes an unpleasant
commitment to replication, which comes for a price. The robot used in this
project had nothing in common with the hens which took part in the experi-
ments: they were completely different beings, of which we claimed the one was
a computational model of the other. In this case, expecting — wishing for —
identical performance is far-fetched. However, fortunately for the engineer in
the cognitive scientist, there are parameters that one can tweak, just as in every
model. Playing with the parameters to achieve the exact same performance,
one is displaying what Lehnert! (1989) calls the TWITIT methodology: Tweak
It Til It Thinks, that is, play with the parameters so long until you get the
performance of your model so close to the real subjects as possible.

3.3.4.2 A similar model by Steels and Kaplan

After we have developed our model, we have discovered a study using a very
similar methodology. Steels and Kaplan| (2001) have opted for an exemplar-
based system with holistic processing in their model of social learning of lan-

1 The problem goes actually deeper, and has to do with the methodological principle of
animal and cognitive psychology to deal with meaningless stimuli. This commitment to mean-
ingless atomic stimuli is problematic, because for living beings all stimuli are meaningful. The
scope of this discussion is outside this thesis, but for a broader treatment see Clancey| (1997),
especially Chapter 4.
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Figure 3.13: Sample images of a red ball from the experiments on social learning
by [Steels and Kaplan| (2001)).

guage. They also used a pixel-based similarity measure for category learning.
While their model at first was based on the standard RGB color space used
by computer cameras, they later switched to the L*a*b* space and report an
improvement of the results. Using a similar pixel-based similarity measure as
the one used in the EROSAL project, Steels and Kaplan try to develop a robot
model of learning words for single objects (names). Like Steels’ earlier studies,
the experiments are again constructed as “games”. The game the robot is en-
gaged in this time is called “categorization game”. The robot (in this case a
Sony AIBOT™robot dog) is shown an object by a human experimenter and is
expected to classify it by uttering the same name that was uttered by a human
instructor before. If the robot successfully classifies the object, it gets positive
reinforcement. In case of error, the experimenter gives negative feedback. An
associative memory stores relations between object views and words. Note that
the object views are not matched on a single category which is then associated
with a word, as Steels’ earlier models would assume. Rather, an input pattern
is directly associated with an output pattern (here, a name), without an in-
tervening abstraction step. This is what has earlier been called categorization
without categories. As can be seen in Figurel3.13 the views which are associated
with the same name (“ball”) are actually quite different. Extracting their com-
mon, invariant features would be a very difficult, if not impossible task. And
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without pre-coded detectors for the “relevant” features and other constraints
implemented by a human engineer, we could also not be sure that the “cor-
rect” defining features are associated with the name “ball” (e.g., features of
the floor might be included in the definition). However, building in such pre-
coded mechanisms would contradict the goal of behavior-based Al to construct
robots that are autonomous, and it would also not lead to a realistic model of
categorization and naming. The authors state that “[tJhe different views of an
object form an implicit category, based on the fact that they are named the
same way”. At the end of the experiments, the use of appropriate words, when
averaged through one whole experiment including the training trial, was 80%.
There is one important drawback of their model, however: Steels and Kaplan
(2001) used pre-coded names for objects within their model. While the cate-
gory is constructed by the robot itself by assembling object views, the robot
has ready-made detectors for all object names that might possibly occur in the
experiments, and simply attaches the respective pre-coded label to the current
object view.
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Chapter 4

Behavioral Categorization

The TINAH robot (and the EROSAL project in general) stressed two points:
the role of empirical data and testing the model in the same environment in
which the subject performed. Behind these two principles, there is one more
general principle: taking as the source of the definition of intelligence (or natural
intelligence) and learning the psychologically quantified behavior of animals in
strictly controlled environments. The only measured behavior of the hens in the
experiments that led to the robot model was the pecking behavior. This meant
that the robot model was also restricted to this one behavior, where the model
refers not only to the behavior system, but also to the morphology of the robot.

TINAH demonstrated that one does not need categories inside the agent to
be able to talk about categorization. Another group that emphasizes a behav-
ioral description of categorization is the Al Lab at the University of Zurich. In
the next section, some categorization experiments done at this laboratory will
be explained. The setup and the general idea of these experiments were taken
over in the Khepera experiments that are explained in the second section of this
chapter.

4.1 The Sensory-Motor Coordination Experi-
ments

Pfeifer and Scheier| (1997) point out that the attribution of categorization behav-
ior to a natural agent does not need to stem from categories inside the head of the
agent. This means that “if an agent consistently displays one kind of behavior
when it encounters one type of object but not when it encounters other objects,
it is reasonable to talk about categories of the agent” (ibid.). They therefore
implemented an autonomous agent that categorizes objects in the environment
without building in any pre-programmed categories or nodes. Another feature of
their system is its being inspired by sensory-motor coordination. Unfortunately,
they don’t provide a definition of sensory-motor coordination, except for a quote
from Dewey, which claims that “it is the movement which is primary, and the
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sensation which is secondary” (Pfeifer and Scheier| [1997). The idea of sensory-
motor coordination is also presented without any clear empirical support, which
would justify the implemented computational mechanisms. Therefore, despite
the name of their article (Sensory-motor coordination: the metaphor and be-
yond), the role of this principle does not get beyond a metaphor. Viewing
classification as a sensory-motor coordination process is achieved by including
the robot’s own actions into the classification process (Lambrinos and Scheier,
1996)." Another feature of their work is that action selection and categorization
are not seen as separate problems: categorization is seen to be bounded closely
to action selection, because it is evaluated behaviorally.

Even as a metaphor, the idea of integrating action into categorization has
an important computational advantage. Sensory-motor coordination offers a
solution to the problem of perceptual aliasing. Perceptual aliasing refers to
the association of similar sensory patterns to different actions (Whitehead and
Ballard, 1991). In order to differentiate between such similar patterns, the
agent can make use of its actuators to manipulate the situation and enable a
more favorable sensory input pattern. This is called active perception (Bajcsy,
1988; Nolfi and Marocco, 2002). Sensory-motor coordination also facilitates the
extraction of regularities from the sensory input. In many cases, regularities in
the sensory pattern which could lead to correct mappings to output patterns
are hidden and should be extracted by a transformation. One way to do this
transformation is to recode the sensory pattern, whereas another way is to use
sensory-motor coordination. 2

The SMC experiments can be divided into two phases, with important dif-
ferences between the underlying computational systems. The two phases will
be explained here shortly, with emphasis on the learning mechanisms.

4.1.0.3 First phase of SMC experiments

The SMC experiments were carried out using a Khepera robot®. The first group
of SMC experiments (referred to as SMC I from here on) involved the classifi-
cation of pegs of two different sizes (Scheier and Pfeifer [1995). See Figure 4.1
for a depiction of the experimental setup. A hook was attached to the back of
the Khepera robot for picking up small objects. This hook was big enough for
a group of the pegs, and too small for the rest of the pegs. The robot could
therefore pick up only some of the pegs, by circling around them, and getting
them inside the hook.

IBecause the authors stress sensory-motor coordination as a primary feature of their robots,
their experiments will be referred to as the SMC experiments from here on. However, what
should be attributed to this principle is not seen to be more than the inclusion of action in
the categorization process.

2For a more detailed treatment see Nolfi_and Parisil (1999). The authors refer to the
transformation of the sensory space and the perceptual aliasing problem as two different
things. The two issues are related, in that the sensory-motor transformation of the sensory
space is actually a solution to the perceptual aliasing problem.

3See Section 4.2l on page 74! for a description of the Khepera robot, and Figure 4.3 on
page |74l for a picture of the robot.
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Figure 4.1: The experimental environment in the first SMC experiments (Scheier
and Pfeifer] [1995).

Scheier and Pfeifer (1995) claim that the demonstration of a behavior does
not mean that the behavior is actually represented inside the agent: in order to
have wall-following behavior, one does not need a wall-following module. There-
fore, the authors opt for a processing scheme called the Extended Braitenberg
Architecture (EBA, from here on)*. In this architecture, one still has behaviors,
called processes, but the difference is that they are all continuously active, and
what changes is the effect they have on the actuators (see Figure [4.2] for a dia-
gram of EBA). As shown in the diagram, each of the processes active take input
from the sensors and produce values that are written to the actuators. The val-
ues from different processes are then summed to get the final activation value
for the effectors. In the first experiment, the only effectors are the wheels, and
the speed values of the two wheels are simply the sums from different processes:

N

s(t) = (si(t), (1)) = (Z Oﬁ(t),ZO?(t)> (4.1)

i=1

In Equation 4.1 s;(¢) and s,.(t) correspond to left and right wheel speeds at time
t, respectively. Similarly, oé(t) and o} (t) correspond to the output of process i
for left and right wheels at time t, respectively. The processes produce values for
writing to the actuators. The process avoid obstacle, for example, determines
the values it adds to the wheel speeds as follows:

3 6
oho(t) =Y Gil Ri(t) = > ¢iIRi(t) (4.2)
=1 =4

4See Lambrinos and Scheier] (1995) for details of EBA, and for a forerunner of it see Steels
(19955).
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Figure 4.2: Schematic diagram of the extended Braitenberg architecture
(adapted from [Scheier and Pfeifer (1995))).

3 6
0ho(t) = =Y de—ir1TRi() + > d6—ip1IRi(t) (4.3)
i=1 i=4
In Equations 4.2 and 4.3, ¢; corresponds to a parameter determining the effect
of the infrared sensor IR; on the output of the process.

The only mapping that had to be tuned, i.e. changed by learning, was the ef-
fect of the grasp process on the actuators. In case a reinforcement was received,
the angular velocity vector, which corresponded to the motor values, was associ-
ated with the quantity @) which determined how strongly the motor values were
controlled by the grasp process. A positive reinforcement was determined by
the existence of an object in the hook behind the robot, as sensed by a proximity
sensor. A simple Hebbian network was used for learning. |Scheier and Pfeifer
(1995) claim that expecting the robot to learn by chance is unrealistic, because
it would take too long, and a bias is therefore introduced into the system. This
is done through the move along object process, which caused the robot to cir-
cle around an object, and in the meanwhile also increased ). Circling around
the pegs, with the execution of the move along object process, was a reflex
action; what was to be learned was not to circle around bigger pegs, so as to
pick up only the small pegs.

In the experiments carried out, the robot learned trying to grasp small pegs,
and not grasping the bigger pegs. Because circling around the pegs was a reflex
action, the robot kept circling around the bigger pegs, although it did not try
grasping them. In order to avoid this, a reflex (called “heuristic” by Scheier
and Pfeifer| (1995)) was built in, which caused the robot to stop circling around
the peg once learning had occurred. In the experiments, the robot encountered
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50 small and 50 large pegs per trial over 10 trials. Over all trials, the robot
grasped 100% of the small pegs and 10% of the small pegs.

4.1.0.4 Second phase of SMC experiments

The second group of SMC experiments (SMC II) involved a different setup with
pegs of the same size (Scheier and Lambrinos, 1996; [Pfeifer and Scheier), 1997).
The two types of pegs were distinguished according to the existence of a texture
on them, and the pegs with a texture were conductive, due to a metal band
around them. A camera mounted on the robot was used as a visual sensor. The
robot was also equipped with a gripper extension, which could be used to hold
and lift the pegs, and measure their conductivity. In addition to the hardware
extensions, a simulated fovea was implemented.

In SMC II, the Extended Braitenberg Architecture was preserved. What
was changed was the object-related processes (i.e. move along object, grasp)
which were replaced by a haptic and a visual system. Both of these systems
consisted of a sensory map, an attention map and a feature map. The sensory
maps supplied sensory information to the feature and attention maps. The
attentional maps were coupled to the effectors, which made the robot orient
itself to any interesting stimulus, interesting being defined with bright spots.
Together with the effectors and the fovea the visual attention map formed a
sensory-motor loop: it brought the robot to relevant places in the environment
while at the same time keeping the eye focussed on the spot where the robot was
heading to. The attention loop created by the haptic system made the robot
focus on the object by turning towards it.

Feature maps, which distinguished certain features in the environment, were
connected via modifiable feedback connections to the attention maps. One im-
portant feature is the connectivity of the haptic and visual feature maps. These
maps were connected via reentrant connections, and the basic categorization
mechanism involved the correlation of the signals of these feature maps. Learn-
ing was achieved by updating the weights of the connections between the feature
maps, using a Hebbian learning scheme. The feature maps could inhibit or ac-
tivate the attention maps, whereby the attentional sensory-motor loops formed
by the attention maps, effectors and sensory maps could be either enhanced
or broken down. The learning process was modulated by a value map, which
was connected to the conductivity sensor of the gripper. Learning took place
only when there was a conducting object present in the gripper. In essence, the
result of learning was that relevant (i.e. conductive) objects enhanced activity
in the attentional loop while it was broken in the case of uninteresting objects.

In the experiments carried out with the SMC II model, the robot learned
not to inspect the non-conductive/non-textured pegs. This took the robot on
average 12 encounters with non-conductive objects (Scheier and Lambrinos,
1996). At the beginning the robot was inspecting, i.e. taking into the gripper and
measuring the conductivity of, all the pegs. After the robot acquired inhibiting
the haptic and visual attentional loops when it got close to a peg without texture,
it stopped exhibiting the orientation behavior towards them.
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Figure 4.3: The Khepera™Trobot.

4.2 The Khepera Robot

The Khepera robot is developed by the K-Team from Switzerland (K-Team),
1999b). Due to its compact size, versatility, and robustness, it has been used
in many experiments in embodied Al and machine learning. Figure 4.3/ depicts
the Khepera robot used in the experiments.

The Khepera robot is 32 mm high, 55 mm in diameter, and weighs 70 grams.
It has eight infrared sensors, six of them on the front and two at the back, which
can serve as ambient light sensors or proximity sensors. The robot has two
wheels, which can be controlled separately. In order to go forward, the wheels
are set to the same speed, whereas turning is achieved by assigning different
speeds to the wheels. Like the Lego RCX, the Khepera has an on-board memory
which can store programs of up to 256 Kilobytes, but one can also control the
robot with a program on the computer. The processor is a Motorola 68331.
The robot runs either on the rechargeable NiCd batteries that can drive it for
half an hour, or connect to an external power source. When the robot has to
use an external power source and connect to the computer to be controlled by a
program, it has to connect to an intermediate unit, which connects to the RS232
port of the computer and to the power line. The communication between the
computer and the robot is done by passing text messages through the serial
communication line.

The original Khepera robot can be extended by attaching additional turrets
to it. This is done by connecting the turrets onto the pins at the top of the robot,
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which stabilize the turret and at the same time serve for the communication
between the turret and the robot. The turret can be controlled and sensory
values from the turret can be read using the same serial link with the robot. One
of the possible extensions is the gripper turret (K-Team) [1999a). The gripper
turret can be used as an arm to pick up objects of up to around 50 grams.
The sensors on the gripper are an optical barrier inside the gripper for object
detection and an electrical conductivity sensor for measuring the conductivity
of the gripped object.

The program controlling the robot has been written in the Java program-
ming language. Java is currently one of the most widely used object-oriented
languages, and there is strong community and corporate support behind it,
providing programming tools and resources. The external libraries used in the
programming of the robot included the Java Communications API, which pro-
vided classes for communicating through the RS232 port® and the Khepera API
by Pér Spjuth®, with some minor modifications.

4.3 Behavioral Category Acquisition Experi-
ments

The main idea of the experiments reported in this thesis was to replicate the
SMC experiments, albeit with a simpler learning mechanism. The experiments
involve the autonomous learning of categories by a robot, where the acquired
categories are behavioral, because they do not correspond to any entities built in
by the experimenter. In the following, the setup and the details of the software
will be explained.

4.3.1 The Setup and Software

The setting involved simple wooden blocks inside a field delineated with wooden
slabs, similar to the setting in the SMC experiments. The learning mechanism
is again an exemplar-based one, due to the reasons explained in Section [3.3.2)
and is very similar to the one programmed for the EROSAL project. The
differences are due to the differences between the environment in which the
robots operated, and the kind and number of behaviors necessitated by the
tasks. TINAH operated in a Skinner box in which it had to go only left and
right, and decide to peck or not. The tasks the Khepera robot had to carry out
were more complex. In contrast to TINAH, it used more behaviors, and the
reinforcement scheme was more complicated.
The main constituents of the learning mechanism are as follows:

e Distance measure

5The Java Communications API can be downloaded from/http://java.sun.com/products/
javacomm/downloads/index.html.

6The Khepera API can be downloaded from |http://hem.passagen.se/foggy/khepera/
index.htmll A detailed documentation is also available at the same web site.
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e Arbitration mechanism

e Behavior selection strategy
e Database

e Behaviors

In addition to these, there is a reinforcement scheme, which runs as a part of
the experiment.

The distance measure computes the similarity of two states. A state, which
is a representation of the condition the robot finds itself in at any given moment,
contains data from the following sensors packed into an array:

o Resistivity

e Arm position

e Presence of object

e Proximity sensors

e Ambient light sensors

In case a gripper turret is not attached to the robot, the states do not contain the
first three entries, because sensors on the turret are responsible for supplying
these data. The similarity mechanism takes in two such states as arguments
and returns the distance between them. The Euclidean distance measure was
used in the Khepera experiments, as in the TINAH experiments”. The distance
between two states I and I’, which both consist of an array of integers with the
ith element being I;, is as follows:

n

d(I,1') = (I - I))? (4.4)

i=1
The similarity of two images is then the exponentially weighted distance:
s(I,1') = eI (4.5)

The database consists of exemplars stored by the arbitration mechanism.
Each exemplar is of the form m = {s;,b,r, s;11}. Here, b refers to the behavior
that executed before the exemplar was formed, r to the reinforcement, and
s¢ and Sgy1 to the states in which the robot found itself when the behavior
started execution and was finished, respectively. An exemplar is formed only
when nonnegative reinforcement is received. When a behavior finishes, a new
behavior is picked in the following way. For each behavior b, the exemplars in

"Most of the equations presented here are actually very similar to the ones presented in
Section [3.3.2/ on page [58.
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the memory which have the behavior b are collected in a set M;. The response
strength for behavior b is then calculated as follows:

Ry = Z (I, I) - 7' (4.6)
me My

In Equation 4.6 I,,, stands for the first state in the exemplar m, I for the current
state, and r,, for the reinforcement of exemplar m. The calculated strengths
are then weighted to arrive at the execution probabilities for each behavior b in
the set of behaviors B:

Ry

a ZbeB Ry

All behaviors now have a probability of execution attributed to them. These
probabilities range between one and zero, and add up to unity. In order to
pick one, the behaviors are ordered randomly on the line of real numbers (the
ordering is not important, as will be obvious). A random number between zero
and one is drawn, and the behavior which lies after the random number on the
real number line is chosen for execution. In this method, the probability of a
behavior being picked is proportional to its execution probability. The pseudo
code for this routine is as follows:

P, (4.7)

Sum of probabilities S
Random number R
for All behaviors do
Add the execution probability of the behavior to the sum of probabilities
if The sum exceeds the random number then
Pick the behavior for execution
else
Move on to next behavior
end if
end for

The controlling software is essentially an infinite loop that executes a behav-
ior, stores an exemplar in the memory when necessary, and then picks a new
behavior to execute. These tasks are carried out by the arbitration mechanism,
embodied in the software class Arbitrator. The Arbitrator picks out a be-
havior —from among the set of behaviors with which the experiment started—
using the similarity measure, the behavior selection strategy and the database.
The behavior selection strategy returns a mapping of behaviors to strengths.
This corresponds to Equation 4.6, The components that were changed through
the experiments are the behavior selection strategy, the behaviors and the re-
inforcement scheme. The distance measure at the beginning was the Euclidean
distance, and was not changed. The behavior selection mechanism was, at the
beginning, based on the inverse exponential of the distance of two states (see
Equation [3.2).%

8See [Atkeson et all (1997) for a comparison of different weighting functions.
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4.3.1.1 The problem of negative reinforcement

In the case of a negative reinforcement, the most plausible thing to do is to
store an exemplar with the reinforcement value of —1. The problem with using
a negative value of reinforcement is that it corresponds to deleting the previous
values of positive reinforcement. When an exemplar with negative reinforcement
is stored, its mathematical effect is diminishing the effect of any exemplars with
positive reinforcement that have been stored earlier. The phenomena of extinc-
tion is revealing in this context. In the psychological phenomena of extinction,
a stimulus is presented continuously without an unconditioned stimulus with
which it was paired earlier. The conditioned response to the stimulus is lost
after repeated presentations. Psychological evidence shows that extinction does
not involve the unlearning of a conditioned-unconditioned stimulus association,
but rather new learning of the inhibition of the association (see (Domjan, 1998,
p.82)). The method used for implementing negative reinforcement was as fol-
lows: if a behavior received negative reinforcement when the robot was in the
state s, one exemplar with each behavior other than the one that has to be
negatively reinforced was stored. These exemplars had as first state the same
state and a positive reinforcement of 1/(n — 1), where n is the total number of
behaviors active in the experiment. This way, the effects of an exemplar are not
removed, and the robot can still learn.

One problem was the signaling of reinforcement. The path chosen was to
write different reinforcement sources (called Notifiers in the program) which
signaled reinforcement when the conditions they were controlling were satisfied.
For example, the reinforcement source for obstacle avoidance gave a negative
reinforcement when there was a proximity sensor value higher than a certain
threshold. Another notifier gave a positive reinforcement when the distance
travelled was greater than a threshold. Whether the agent should be getting
reinforcement for what it is doing, and the value of this reinforcement, should
actually be evaluated by an entity independent of the sensors of the robot,
although the agent picks up the reinforcement with its sensors. Ideally, the
mechanism that supplies the reinforcement should run on another computer,
independent of the control program that runs the robot, and the evaluation of
the behavior of the robot, with respect to whether giving a reinforcement or
not, should be independent of the sensors of the robot.

4.3.2 Object avoidance

As a first task in order to test the potential offered by the above described sys-
tem to learn, the well-known task of obstacle avoidance was selected. Obstacle
avoidance is, from an engineering point of view, very easy to program into a
robot. Similar to a Braitenberg vehicle that follows or avoids light (Braitenberg)
1984), one need only make the proper direct connections between the sensors
and the motors. In the case of avoiding obstacles, this corresponds to adding
a certain value proportional to the values of proximity sensors on one side to
the motor values on the same side. Learning this kind of a coordination is a
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different matter. In this section, two models of learning such behavior are pre-
sented, with the second model improving on the first one. The models differ
in the behaviors they employ, and the way negative reinforcement is given and
processed.

4.3.2.1 Model 1

In the first model, the set of behaviors included behaviors that were driving
forwards, backwards, or veering to the side. There were different versions of
these behaviors with varying speed and duration. The reinforcement scheme was
supposed to give positive reinforcement proportional to the distance travelled
when the robot did not bump into an obstacle, and negative reinforcement if
it bumped into one. Due to reasons explained above, there was no negative
reinforcement. In the first model, any negative reinforcement from the notifier
was ignored, and no exemplar was stored.

The reinforcement scheme, embodied in the reinforcement notifier, was as
follows:

e Give zero reinforcement if the robot gets too close to (or bumps into) an
obstacle.

e Give a reinforcement proportional to the distance travelled by the robot
whenever a behavior moves the robot and there is no collusion.

This scheme was to impart to the robot the ability not to drive against obstacles,
and travel forward when possible. The aim was to find out whether the robot
would learn to execute the behaviors that moved it forward when there were
no obstacles in front of it. The robot was expected also to learn to use the
behaviors that move it a large distance when the sensors registered minimum
values of obstacles, and the slower ones when there was a certain presence of
obstacles.

The robot did not exhibit any learning with this configuration. Once certain
behaviors that took the robot a long distance forward were executed a few times
and acquired high reinforcement values, these behaviors were executed even in
the cases where they would cause the robot to bump into an obstacle. Behaviors
that would take the robot out of such impasses did not acquire enough reinforce-
ment to have high probabilities which would make them a more probable choice.
This pointed out that behaviors which aid the robot to get out of bump situa-
tions should receive reinforcement in such cases, which would cause them to get
favored in similar situations. Another point is negative reinforcement. If there
is no negative reinforcement in any form, positive reinforcement that was re-
ceived in a situation is effective also in irrelevant situations, which means that a
mechanism for showing that behaviors other than the ones that cause negative
reinforcement are more preferable is necessary. The nonexistence of negative
reinforcement avoids the differentiation of behaviors according to situations.
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4.3.2.2 Model 2

There were a number of problems with the first model. One of these was the
overly differentiated behaviors. This is not parsimonious. One alternative is
using just atomic behaviors, which then can be combined. Instead of a behavior
that takes the robot a long distance, for example, the moving forward behavior
can be executed multiple times. The next model therefore involved atomic
behaviors, i.e. behaviors that were relatively short and did not have counterparts
that were longer or faster. There were four of these behaviors: going forward,
backing up, turning left and turning right. Turning left and turning right did
not move the robot forward. Moving forward, in case no obstacle was on the
way, produced positive reinforcement. If an obstacle was bumped into, negative
reinforcement was given, and the turning behaviors produced no reinforcement
whatsoever. The reason for this is that if the robot ran into an obstacle with a
behavior, turning at the same place would not get it out of there. In the second
model, a negative reinforcement for a behavior meant a positive reinforcement
for each of the other behaviors with the same data as in the situation in which
the behavior gets a negative reinforcement, as explained above.

In order to explain the reinforcement scheme, one could use the terms of
negative reinforcement zone and empty zone. A negative reinforcement zone is
an area where at least one of the sensors register a proximity reading higher
than the collusion threshold. An empty zone is a place where the robot has
not collide into anything. The reinforcement notifier used for the second model
had to give a positive reinforcement to the robot when it either travelled in an
empty zone without entering a reinforcement zone, or when it successfully got
from a negative reinforcement zone into an empty zone. Negative reinforcement
was given by the notifier when the robot got from an empty zone into a negative
reinforcement zone, but not when it stayed in a negative reinforcement zone.
The reinforcement scheme was accordingly as follows:

e If the robot was in an empty zone (i.e. a place where there are no close
objects) but then got into a negative reinforcement zone give negative
reinforcement.

e If the robot was in a negative reinforcement zone but did not get out of
it, give no reinforcement.

e If the robot was in a negative reinforcement zone but then got out of it,
give positive reinforcement.

e If the robot was not in a negative reinforcement zone and did not get into
one in the meanwhile, give as reinforcement the distance travelled (1 for
the forward behavior, zero for anything else).

One important problem was that because the sensors have very low resolu-
tion and signal closest distance even when the robot is as far away as two cen-
timeters from the wall, there is no difference no matter what the robot does once
it’s close to the wall: it is always getting negative reinforcement. This avoids
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any differentiation between the different behaviors, because none of them can
take the robot out of the zone where it gets negative reinforcement. The solu-
tion chosen was making the behaviors that move the robot forward or backward
faster, so that they cover more distance and get the robot out of the negative
reinforcement zone.

The reinforcement notifier, which was working continuously and checking for
reinforcement with an interval of 50 milliseconds, was modified to return a re-
inforcement value at the end of the execution of a behavior. The reason for this
change is technical, and has to do with the limitations of the communication
channel between the computer and the robot. The reinforcement mechanism
has to have access to the sensor values of the robot, and these are retrieved
from the robot via text messages. This interferes with the behavior mechanism,
and the process of checking for the conditions of reinforcement were much slower
than expected. Another problem is that the reinforcement checking mechanism
is dependent upon the robot; for example, one cannot reliably know the dis-
tance travelled by the robot. Once a behavior is executed that moves the robot
forward, it has to be accepted that the robot also moved in reality, whereas
that does not have to be the case. The wheels of the robot actually slide on the
table when the robot tries to drive against an obstacle which it can not move,
and the wheel counters which register the movement of the robot register that
the robot actually moved. Ideally, one could have another computer follow the
robot on the desk with a camera and provide reinforcement, which can be done
in the future. In the object avoidance task, the robot actually has one aim: run
the behavior forward as much as possible, and whenever necessary, run other
behaviors to get out of negative reinforcement zones, in order to get positive
reinforcement. This is what the reinforcement scheme stipulates. As mentioned
above, this actually should not be the case: the robot should aim to either cover
as much distance as possible, or visit as vast an area as possible on the table.
However, this requires the involvement of a reinforcement mechanism running
on another computer, for which the time and resources were not available.

The robot exhibited learning in the second model. In cases where it got into
a negative reinforcement zone it acquired which behaviors to execute in order
to get out of it. The robot learned to back up when it was facing a wall, and
to move forward when the wall was behind it. It also learned to travel forward
as much as possible when it was in an open plane. Learning here refers to
the differentiation of a behavior from the others in situations where it is most
favorable to execute it. This differentiation is achieved through the acquisition
by a behavior of a high probability of being executed in the relevant situations.

One thing that was tested for was the reinforcement value that should be
given to behaviors when a behavior is to be negatively reinforced. If a complete
reinforcement (1) is given to all the other behaviors as inhibition of one behavior,
the strengths of the behaviors actually converge to a common value; that is,
behaviors do not emerge as the best choice in certain situations, such as backing
up when facing a wall or going forward when no obstacles are detected. Rather,
the behaviors have very close probabilities, each probability being close to 1/n,
where n is the number of behaviors.
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What the robot did not learn was not getting into a negative reinforcement
zone. The negative reinforcement zone lay approximately two centimeters from
the nearest obstacle, depending on the lighting conditions. Getting out of this
zone was no problem for the robot. The area before the reinforcement zone,
however, presented the real problem. Because the sensors registered relatively
small values even at considerably small distances to an obstacle, the similarity
of exemplars created when the robot was standing at a distance of approxi-
mately three centimeters to an obstacle to exemplars created in an open area
was relatively high. The moving forward behavior was stored with a positive
reinforcement in exemplars in an open area, which made this behavior favorable
also in situations where the robot was actually relatively close to a wall, situa-
tions where the execution of the moving forward behavior would actually cause
the robot to get into the negative reinforcement zone.

In the area where the robot can actually drive without ending bumping
into a wall and would bump if it drove right ahead, there is a scant difference
between the sensor values. In the obstacle avoidance experiments, the sensors
can be used only as skin sensors. They return very similar values for the areas
where the robot can actually drive forward without hitting an obstacle and the
points where the robot is a distance away from a wall which can be traversed
with a forward behavior. Consequently, the robot has learned very well when to
backup, which is when it has a wall right in front of it, but it did not learn not
to drive against a wall when it is a few centimeters away from it. The reason for
this is that when the robot is a centimeters away from an obstacle, the sensors
do not have values deviating from being four or ten centimeters away from it,
which makes it impossible in this scheme for the moving forward behavior to be
differentiated negatively from other behaviors.

4.4 Outlook

The exemplar-based methodology used in the TINAH experiments, explained
in Chapter (3, has proven in that context to be adequate for building a realistic
model of the categorization performance of chickens. The model was sufficient
for accounting for a first set of data from the natural subjects, i.e. chickens,
and exhibited learning. In the Khepera experiments presented here, a very
similar learning mechanism and methodology have been used. The robot again
exhibited learning, and could discriminate cases where it had to take different
actions. The concept of categorization without categories has been observed in
the Khepera experiments, too: although the learning mechanism did not contain
any mechanisms for mapping sensory values to abstract categories, the robot
exhibited categorization behavior, and carried out different actions in different
situations. Although the robot acted differently in the proximity of an obstacle
and in an open field, there were no entities that corresponded to these two
situations.

When designing a classical system, one would partition the task to be carried
out into modules and these modules would then be arbitrated by a central
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mechanism. In the lazy learning scheme presented here, the so-called arbitrator,
which coordinates the selection of a behavior and the actions to undertake once
a reinforcement is received, resembles the arbitrator in a classical scheme just
by name. Nevertheless, a parallel partitioning of the task space is obvious in
the design of the reinforcement scheme: cases are differentiated from each other,
and which case should be encouraged is explicitly coded in. The most important
difference is that how the encouraged case should be realized is not coded in;
for example, whether the robot jumps over an obstacle (although not possible
with a Khepera) or just drives around it is not specified by the reinforcement
scheme.

The task to be carried out by the Khepera robot and the discriminations to
be learned were more complicated than in the TINAH model, but were never-
theless much more simpler than the cases in classical AI. The most important
commonality in the two models was the role of the underlying principles of ma-
chinery parsimony and autonomy. The robot learned the necessary distinctions
by itself, without any distinctions made by the experimenter in the input data,
which took the form of readings from sensors. Both models take machinery
parsimony seriously, and make a special effort to avoid unnecessary constructs
to have any role in the model. The aim is to arrive at a model that builds in
the least amount of machinery to arrive at a certain behavior. The only distinc-
tions from the point of view of the observer are in the reinforcement mechanism.
The reinforcement mechanism decided when the robot collided with an object
or travelled a distance. As mentioned earlier, these distinctions are actually
external to the model, and in the ideal case, should be embodied by another
observing entity (computer or human being).

Although the similarity-based methodology has proven successful in as sim-
ple a case as obstacle avoidance, it is difficult to derive any far-reaching conclu-
sions, especially regarding the categorization of objects and more complicated
behaviors. This pertains especially to complicated actions like interacting with
an object, e.g. carrying certain objects to a base, and leaving others. One of the
future aims is to carry out the SMC experiments, which involve categorization of
objects. On the technical side of things, the obstacle avoidance task reveals the
inadequacy of the proximity sensors for categorization. The proximity sensors
have a very non-uniform distribution, which means that the distance between a
sensor and an obstacle is not proportional to the value measured by the sensor.
What’s more, the sensors do not return their full value when there is a relatively
short distance between them and an obstacle, but rather when the distance is
approximately two centimeters, which is far from being a physical contact. In
any future categorization experiments, possible objects to be categorized by the
robot could be pegs of different size, as in the SMC experiments. The proximity
sensors would in this case be inadequate for the robot to learn discriminating a
small and a larger peg. The reason for this is that the impression a large peg
would make on the sensors would not be much different from one made by a
small peg. The best solution to this is to include another sensor, a camera. The
images from the camera could be handled as in the TINAH model, i.e. as raw
image data, and a similarity measure at the same level could be used. A more
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realistic assumption would be reducing the resolution of the image and produc-
ing an integer array out of the image data, and including this array in the state
information in an exemplar. This way, the effect of the proximity sensors and
the image data could be balanced.

One inherent problem has to do with the fact that a decision is made in time
steps that are as long as the duration of a behavior. During these time steps,
no sensory values are read and no decisions are made. This is similar to the
plan-as-program view presented in the first chapter: once a decision is made,
a behavior is carried out without making use of or avoiding any contingencies.
The behaviors in this particular case are relatively short and do not require
coordination. The case would be more obvious if among the behaviors there
were ones which required that the robot or one of its extensions be controlled
according to some cues in the environment. In this case, if there is no monitoring
of the environment while a behavior is being executed, the trap of separating
the decision mechanism and the execution mechanism cannot be avoided. This
important distinction, although marginally relevant here, should be kept in mind
once more complicated tasks are carried out and coordination of the robotic
body is required.



Chapter 5

Conclusion

In the preceding chapters, a selective overview of the history and main features of
cognitive science and cognitivism has been given. The aim was to put the various
kind of criticisms to this framework into perspective. It was also reported on an
experiment in animal learning and an accompanying model in the framework
of Comparative Cognitive Robotics. Although CCR, presented a principled way
of building models of learning, it was found to be too restrictive, because it
relies heavily on empirical data, and to create a microworld of behaviors that
are relevant only insofar as they serve to bring forth the performance that has to
be replicated. A different model was presented in Chapter 4. This model used
the same kind of parsimonious learning method, but it did not rely on empirical
data. The aim was to create an autonomous and parsimonious learning agent.
In the fifth and final chapter, some general vies on Al and robotics, and ideas
about in which direction New AI has to proceed will be presented.

In the first two chapters of this thesis, the major differences between the
methodologies of symbolic ATl and New Al have been stressed. The main aim
was to contrast the physical-symbol system hypothesis, which served as the ba-
sis of the projects of cognitive science and Al, with the interactionist approach
of New AI, and the physical grounding hypothesis. The physical grounding hy-
pothesis claimed that in order for genuine meaning to be embodied in a system,
symbols should be physically grounded. Apart from this fundamental difference,
there is one crucial commonality: the engineering aspect of both approaches.
The aim, in the end, is, in both methodologies, to create a functioning artifi-
cial system — in most cases, an agent, also in current models in the symbolic
methodology. The role of engineering rigor is immense in cognitive scientific
modelling: it forces one to build working systems, at the same time promoting
an understanding based on getting involved with blocks of functioning parts,
putting them together in different ways and solving problems on the way to
building a complete system. As revealing and promising this practice may be,
there are two pitfalls which it creates and are frequently not avoided. The ne-
cessity of constructing working systems can force one to build a simplistic and
unrealistic model — in the sense that totally unrealistic assumptions are made
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— and nevertheless stand behind it. Another pitfall is confusing the model with
the real thing, finding the explanatory power of engineering systems in a simple
relationship of equality.

Studies of New AI have focused for a long time on basic level competences,
but it should be clear that the final aim is no less than finding out the funda-
mental truths about human intelligence. This is obvious in claims by Brooks
and also in studies which human intelligence is seen to be concretely based on
situated and embodied particulars. The question now is, what should be done in
order to proceed to human level intelligence? This question can be reformulated
and divided into two questions: what is human level intelligence and where does
it come from?

For cognitive science, intelligence has been the ability to manipulate sym-
bols, and there is no intelligence without symbol manipulation. This is so even
when one considers the performances chosen for modelling, rather than the tools
and methods — games and microworlds have been and still are the most popular
subject matters of symbolic AI. The most important properties of symbolic sys-
tems, and faculties necessary for the selected performances, are compositionality,
generativity and recursiveness. Compositionality ensures that the meaning of a
complex expression is a result of the structure and meaning of its constituents.
Generativity and recursiveness together ensure that a production system can
produce an infinite set of statements through a finite set of atomic components
and rules. This is what Chomsky! (1965) refers to as infinite use of finite means,
quoting from von Humboldt.

The physical-symbol system hypothesis and cognitivism are based on these
well-known properties of human language. Compositionality, generativity and
recursiveness are taken to be the trademarks of human intelligence, since they
are also trademarks of the most human activity we know of. One result of
this dependence on language, and taking for granted its logical structure, is an
inherent rationalism, pointed out by Dreyfus as explained in Chapter 1. The
first thing expected of a theory of intelligence is that it explain the properties
seen as inherent to any system that has symbolic logic as its groundwork.t One
way of explaining those properties is, obviously, to put all the logic into the head,
and assume that intelligent behavior is just an expression of this internalized
knowledge.

An interesting discussion that illustrates the dependence on the supposedly
innate properties of the language capacity is the one stemming from the argu-
ment by Fodor and Pylyshyn| (1988) against a connectionist account of cognition.
The burden of presenting a system or methodology that actually exhibits — or
has the potential to exhibit — systematicity? was pressed, not surprisingly, on
the neural network researchers. Neural networks were aiming, at the beginning,
to develop a practice of modelling cognition at a sub-symbolic level (Smolensky),

IThis tendency to reduce every human way of engagement to logic is, as one would expect
it, not inherent to AI, and is called the “decay of dialogue” by Walter J. Ong. For a revealing
account see |Ong (1958).

28ystematicity is the idea that anyone who can think a thought 7" can also think systematic
variants of T', where the systematic variants of T are found by permuting 7’s constituents.
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1988). Fodor and Pylyshyn (1988) argued that connectionism, which takes pride
in the distributedness of its representations and the ability of its neural nets to
cope with ambiguity and noise, can not account for systematicity, and therefore
is not a viable contender against cognitivist models. Since then, many neural
network researchers have dedicated their time and energy to the exploration of
computational methods of connectionist learning which would make it possible
for neural nets to become systematic. This would amount to their being able
to exhibit the three characteristics mentioned above.

Although it is obvious that systematicity is a property of language, what is
not so obvious is that this is due to language reflecting the internal organization
of human intelligence. While cognitivism accepts that this systematicity is in the
intelligent being, in that it is formulated as formulas and rules in a formalization
that uses mental representations as units, New AI and situated Al claim that
these structures are all learned and are a result of culture. Systematicity is
actually a result of humans being able to speak language, and not the reason
for it. Therefore, what one has to study in order to arrive at a model of human
intelligence is the evolution and the acquisition of language.

The emergence of language, or the acquisition and use of symbols, has al-
ways been a matter of dispute, and scientific methods have not always been
sufficient for tackling the phenomena of symbol use and language evolution.
The Société de Linguistique de Paris officially forbid its members discussing the
birth of language, because the matter stirred nothing other than insignificant
speculation. The computational modelling perspective presents us now with
an opportunity just like the one computers presented to psychologists in the
post-war period. Thanks to multi-agent models of the phenomena of commu-
nication, we can study proposals on the evolution of language. One can model
individual competences as either embodied or simulated agents, and examine
the effect of any change in these competences on the evolution of language. The
work of Steels presented in Section [2.1.3]is one of the most prominent examples
of such research. Indeed, computational studies on the emergence of language
have recently been gaining pace.

The move from cognitivist models, with internal grammatical and semantic
structures, to parsimonious agents, brings with itself an accompanying shift in
the way language and a theory of language is seen. The classical structuralist
and Chomskian perspectives take a synchronic view of language, where the —
especially syntactic — state of a given language at a given time is the subject
of study. This state is seen to be static and change is not inherent into the
language. The synchronic view has to be abandoned in order to make place
for an evolutionist perspective on language. Instead of defining a language as
an entity with clearly definable boundaries and rules, a population definition of
language has to be adapted. This involves accepting a circular causality between
the individual linguistic knowledge and the public language: “[t]he individual
language behaviors determine ‘the’ language and the language co-determines the
behavior of individuals” (Steels, 1999, p.144). For a review of current work on
multi-agent modelling of language evolution, see [Briscoel (2002), [Hurford et al.
(1998) and Christiansen and Kirby (2003).
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In the computational models of language evolution, language is viewed as a
living system, that self-organizes and evolves through the collective dynamics
of agents engaged in situated verbal interactions. In the Talking Heads ex-
periments (Steels, [1999), situatedness, the agents’ sharing a common context
and the aim of the language being to refer to objects and situations in the
environment, was achieved by having cameras look at the same situation. In
further experiments which used the same framework of language games but fur-
ther aimed to study the emergence of a common grammar, situatedness was
achieved again by having the agents watch a common scene, this time an ani-
mated one. Standard machine vision algorithms were used to segment the visual
scenes. The scenes involved puppets and simple objects, and aimed to illustrate
typical human interactions that involve agency. A typical scene was one puppet
giving a plastic cube to another, or pushing a cube in the direction of the other
agent (Steels, 2004).® The effect of situatedness revealed itself in the choice of
the participle for marking the direction of the object of an action: giving and
pushing an object in the direction of a puppet had the same participle for ob-
ject, and that solely because the scenes, when parsed by the agents, resembled
each other (Steels, personal communication).

Robotics and the study of language evolution Although situatedness
is an aspect that is often stressed in studies on language evolution, embodiment
is just as often neglected. The importance of situatedness is obvious: language
has to be about something, and it is the fundamental case when it is about
something in the environment shared by the communicating agents. What em-
bodiment provides is just as important. It allows the agents to share a dynam-
ics, and this shared dynamics is then the fundamental context that grounds all
meaning (cf. the discussion on common sense in Section [1.2.1). Naturally, for
this dynamics to be shared, it first has to be formed. The formation of such a
common dynamics corresponds to a history of category acquisition that precedes
language. The category acquisition phase involves the interaction of each agent
with a shared environment, and the autonomous acquisition up of categories.
The mechanism used in TINAH and the Khepera robot is a candidate for such
an autonomous learning mechanism.

Studying the evolution of language in its entirety is, of course, a huge en-
deavor, and carrying out a divide-and-conquer strategy is necessary. In order for
earlier acquired categories to be used in the communicative process, they have
to be turned into symbols, that is, entities have to be created that correspond to
the autonomously acquired categories. These symbols, how they are generated
and communicated, and have communities of agents arrive at a common set of
symbols in order to designate a common set of categories and dynamics, is one
primary part of the solution to the question of the evolution and acquisition of
language (Bickerton, 2003). The process of symbol —or, more generally, sign—

3Although this study is in evolutionary linguistics, it does not study the evolution of
a grammar. The agents already have an internal grammar, and this grammar has to be
formulated in a common code among the agents for the purposes of communication. What is
studied is how the agents agree on a common syntax, in the course of language games.
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generation and use have already been studied by semiosis and, in the biological
domain, biosemiotics. The orientation towards the study of symbol acquisition
will lead to new opportunities for interdisciplinary work with these fields.

One important result of the study of symbol acquisition and use concerns
the nature of the cognitivist hypothesis. The process by which the meaning of
symbols are grounded in the physical embodiment and social situatedness of
the agent are, from a situated cognitive scientific point of view, crucial for the
processing of these symbols in the cognitive machinery, especially after thought
processes based on language exist. If this is so — i.e. if syntax is not enough,
and semantics does not take care of itself — then the cognitivist hypothesis is
wrong, and sensitivity to syntax is not enough for intelligence. This is, just like
the physical-symbol system hypothesis, an empirical question.

Studies into the grounding of symbols and evolution of language also would
change the way external resources such as plans are studied. As mentioned in
Section 2.1.2, plans are, like most other external resources used by humans,
context-bound, and require interpretation and disambiguation. Once a proper
and working model of symbol grounding and their integration into individual
dynamics (in Agre’s words routines) is achieved, plans as resources can be stud-
ied properly, in contrast to solely plans as programs. A plan as a resource
needs interpretation, just like a sentence in natural language, and this process
of interpretation is intrinsically language-bound, that is, the processes which
are responsible for the interpretation of language are also responsible for the
utilization of any other symbolic resource like a plan.
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